Researchers developing molecular delivery vehicles for genetic therapies

November 13, 2006

Researchers at New York University are working to develop molecular delivery vehicles that can be used to transport nucleic acids into diverse cell types, which may lead to eventual applications in genetic therapies. Their work is described as part of the cover story in the Nov. 13 issue of the American Chemical Society publication Chemical and Engineering News.

Scientists have been exploring RNA interference (RNAi) as a gene therapy technique to silence genes that are improperly produced. The "RNAi" approach requires the delivery into the cell of short pieces of the genetic material Ribonucleic Acid (RNA). These synthetic short RNA "oligos" can then pair with specific sites in the cell's own RNA, targeting the genetic messages for destruction and turning off expression of the corresponding genes. However, the widespread clinical use of this genetic therapy relies upon technical improvements, including new delivery vehicles such as the one Kent Kirshenbaum, an assistant professor in NYU's Department of Chemistry, and colleagues present in their work.

The NYU researchers use a modular linear molecule to deliver therapeutic RNA into cells. The molecule has a positively charged site that forms favorable stabilizing interactions with the negatively charged RNA, and a fatty component that interacts with cell membranes. The molecules and RNA form complexes, which protect the RNA from being degraded and deliver it to cells. As a result, the targeted deleterious genes are silenced.

Their research concentrates on making the transition from the lab into real-life smoother. Their linear molecule can be used to deliver small therapeutic RNAs into cell types that are much more representative of cellular targets that investigators are likely to encounter in clinical situations.

Kirshenbaum and his coworkers are now focused on understanding the physical chemical characteristics that give enhanced activity to their molecule, and then use the knowledge to generate a set of more sophisticated delivery reagents for siRNA.

"Our goal is to develop a platform that would allow us to create a library that could be used in different settings or for delivery to different cell types," he told Chemical and Engineering News.

Source: New York University

Explore further: Predictive software can precisely identify most effective ways to target genes with gene editing mechanism CRISPR-Cas9

Related Stories

Researchers discover new mechanism of DNA repair

July 3, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

Kryptonite for cancer cells

March 19, 2013

(Phys.org) —Every available cancer drug is susceptible to resistance, according to Mansoor Amiji, Distinguished Professor and chair of the Department of Pharmaceutical Sciences. Tumors grow more quickly than blood vessels, ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.