Lasers Shine Light on Chemical Reactions

Nov 22, 2006

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have been using a high-resolution laser technique to learn how molecules absorb light and fall apart during photodissociation reactions — chemical decomposition reactions triggered by light. Studying the atomic-level details of such reactions allows scientists to test and refine theories of chemical reactions, and may help them in their quest to use light to control reaction outcomes.

“Despite much research in this field, there remain many unanswered details at the frontier of our understanding about chemical bond-breaking following light absorption,” said chemist Greg Hall, leader of the Brookhaven research team. A paper by Hall’s group describing new experimental and theoretical results has been identified as a “hot article” by the journal Physical Chemistry Chemical Physics, and is now available online.

The Brookhaven team was studying the photodissociation of a much-studied compound composed of one atom each of iodine, carbon, and nitrogen (ICN), which breaks into an iodine atom and a carbon-nitrogen radical upon exposure to light. One reason this molecule has attracted so much attention is because its photodissociation is a particularly simple example of a reaction that can produce the same products by way of two different paths, both initiated by the same pulse of light.

“This is an ideal opportunity to explore in a chemical reaction the effects of quantum interference — the ability of matter to act like a wave, with components that reinforce or cancel one another when combined, depending on the relative position, or phase, of the crests and valleys of the waves,” Hall said. “In the microscopic world of molecules, combining the same two waves with a different phase can change some properties of the product completely.”

In the case of ICN, the two reaction paths correspond to different excited states, or rearrangements of the electrons. When excited, the electrons no longer hold the molecule together. As the normally linear molecule falls apart, the excited electrons also make it start to bend, leading to a rotation of the CN fragment.

Using one laser pulse to start the reaction and another laser to probe it, the scientists can capture the details of fragment rotation after the fragments have formed but before they’ve had a chance to be disturbed by collisions with other molecules around them.

“What we actually measure is how fast and which way the fragments are going and around what axis they are rotating as they separate,” Hall said. “To do this, we measure how much of the probe laser beam is absorbed by the sample as we change its frequency (or color) by very small amounts, and compare the shapes of the absorption spectra measured with different combinations of beam directions and polarizations.”

Such measurements made using linearly polarized lasers can determine if the fragments’ rotation axis is parallel to the plane of light polarization or perpendicular to it, but linearly polarized light is too symmetrical to distinguish up from down, left from right, or clockwise from counterclockwise. Yet these distinctions are predicted to be the clearest signature of the quantum interference between paths.

In the newly reported work using circularly polarized lasers — where the electric field spirals around the direction of beam propagation like a corkscrew — the Brookhaven team has observed previously invisible patterns that are related to which fragments are rotating in the same direction as the laser light, and which in the opposite orientation.

“These subtleties of orientation are directly related to the phenomenon of quantum interference in photodissociation, and we are the first to measure how the orientation depends on the direction of the fragments’ recoil velocity as these light-sensitive molecules fall apart,” Hall said.

The results are helping Hall and other chemical physicists around the world understand how phase affects chemical reactivity and how manipulation of phases with lasers may be used to control the outcome of chemical reactions.

Source: Brookhaven National Laboratory

Explore further: What's fair?: New theory on income inequality

Related Stories

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Water was plentiful in the early universe

May 13, 2015

Astronomers have long held that water—two hydrogen atoms and an oxygen atom—was a relative latecomer to the universe. They believed that any element heavier than helium had to have been formed in the ...

New light on bacterial microcompartments

May 12, 2015

Bacteria contain "microcompartments," which are poorly understood organelles that play critical roles in metabolism. Understanding how they work may ultimately enable engineering them for useful applications. In salmonella, ...

Recommended for you

Researchers prove magnetism can control heat, sound

9 hours ago

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

18 hours ago

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.