U of T home to first molecular printer in Canada

Nov 02, 2006

Think of it as a miniscule dot-matrix printer that uses biological ink. Students and faculty at the University of Toronto’s Institute for Optical Sciences (IOS) will have access to the Nano eNabler, the first benchtop molecular printer in Canada, which will allow them to place microscopic dots of biological material onto surfaces with nanometer spatial precision.

In a six-month pilot project, Bioforce Nanoscience of Ames, Iowa has loaned the printer to the IOS, so that faculty and students can apply the technology in new research scenarios and experiments.

“This is a great example of how researchers and industry partners are working together,” says Karen Grant, managing director of the IOS. “The company benefits because we are writing application notes on how it’s used. We benefit because we can offer state-of-the-art equipment to our faculty, who can bring their students to come and work with it and experience it.”

The printer places dots on a variety of substrates by channeling a solution of biomolecules such as proteins, DNA, or antibodies from a reservoir onto a tape tip. The tape tip is then lowered with meticulous accuracy onto a surface to drop the dot.

Cynthia Goh, associate director of the institute, is a physical chemist who saw the potential the device could have for her research. Part of her work is in tissue engineering, where she requires the ability to immoblize biomolecules so she can study their material properties. Goh is also working on building micron-sized channels to control fluids at the microscale. The printer will allow her to innovate new designs quickly.

“Before, if I wanted to try out an arrangement of molecules, I’d have to build a whole mask, trace a design onto silicon, expose the silicon to light and then etch the channels. This takes time. It’s costly,” Goh explains. “But with this printer you don’t have to do complex microfabrication. You almost just type in the pattern you want.”

Venkat Venkataramanan, head of IOS scientific operations, says that though the Nano eNabler is designed to place biological dots, there could be many other applications in phototonics, semiconductors, or in microstructures used in optics. The company behind the printer hopes the institute, which brings together diverse faculty and students from chemistry, physics, materials science and electrical and computer engineering, will help find those new uses.

Given that the printer is just on loan, it is possible that demand for time with the equipment may exceed its availability. “We’re expecting to also have people from medical sciences, hospitals and other universities wanting to use it, because this is a one-of-a-kind instrument in Canada right now,” explains Venkataramanan. “But that’s OK. We’re here to make the device available.

“And we’ll see how it goes. If we’re making progress, they’ll let us keep it longer.”

Source: University of Toronto

Explore further: Self-replicating nanostructures made from DNA

Related Stories

Research could lead to biodegradable computer chips

1 hour ago

Portable electronics - typically made of non-renewable, non-biodegradable and potentially toxic materials - are discarded at an alarming rate in consumers' pursuit of the next best electronic gadget.

Researchers find 'decoder ring' powers in micro RNA

1 hour ago

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

Squeezed quantum cats

1 hour ago

ETH professor Jonathan Home and his colleagues reach deep into their bag of tricks to create so-called 'squeezed Schrödinger cats.' These quantum systems could be extremely useful for future technologies.

Recommended for you

Self-replicating nanostructures made from DNA

May 28, 2015

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Nanosilver and the future of antibiotics

May 27, 2015

Precious metals like silver and gold have biomedical properties that have been used for centuries, but how do these materials effectively combat the likes of cancer and bacteria without contaminating the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.