Bio-inspired assembly of nanoparticle building blocks

November 27, 2006
Gold Amphiphiles 1
V-shaped amphiphilic molecules containing gold nanoparticles form cylindrical micelles when exposed to water. Credit: Eugene Zubarev/Rice University

Chemists at Rice University have discovered how to assemble gold and silver nanoparticle building blocks into larger structures based on a novel method that harkens back to one of nature's oldest known chemical innovations – the self-assembly of lipid membranes that surround every living cell.

The research appears in the Nov. 29 issue of the Journal of the American Chemical Society (JACS 2006, 128, 15098).

Researchers believe the new method will allow them to create a wide variety of useful materials, including extra-potent cancer drugs and more efficient catalysts for the chemical industry.

The method makes use of the hydrophobic effect, a biochemical phenomena that all living creatures use to create membranes, ultra-thin barriers of fatty acids that form a strong yet dynamic sack around the cell, sealing it from the outside world. Cell membranes are one example of a micelle, a strong bilayer covering that is made of two sheets of lipid-based amphiphiles, molecules that have a water-loving, or hydrophilic, end, and a water-hating, or hydrophobic, end. Like two pieces of cellophane tape being brought together, the hydrophobic sides of the amphiphilic sheets stick to one another, forming the bilayered micelle.

Gold Amphiphiles 2
This electron microscope image clearly shows the tightly packed cylinders of gold nanoparticles. Credit: Eugene Zubarev/Rice University

"When the micelle forms, the process drives the packing of all the junction points, which connect the hydrophobic and the hydrophilic part of an amphiphile, into a high-density array," said Eugene Zubarev, the Norman Hackerman-Welch Young Investigator and assistant professor of chemistry. "By attaching a nanoparticle to the junction point of an amphiphile, we can, in effect, use micellization as a means to assemble billions and billions of individual nanoparticles into well-defined one-dimensional superstructures that are soluble in water."

Zubarev and colleagues synthesized V-shaped amphiphiles of polystyrene-b-poly(ethylene oxide) and attached two-nanometer diameter gold particles at the focal point of the V. Upon adding water and inducing micelle formation, the team found it could create tightly packed cylinders of gold nanoparticles measuring just 18 nanometers in diameter.

All micelles form in three allowable shapes – spheres, cylinders and sack-like vesicles. By varying the length of the polystyrene arm, the solvents used and the size of the gold particles, Zubarev and colleagues were able to form spheres, vesicles and vary the diameter of their cylinders, some of which grew to well-over 1,000 nanometers in length.

"We believe further manipulation of these parameters may provide an opportunity to control the optical and catalytic properties of these nanoassemblies," Zubarev said.

Source: Rice University

Explore further: Surface-patterned colloidal particles

Related Stories

Surface-patterned colloidal particles

September 21, 2016

(—A group of researchers from several institutions have attached thiol-terminated polymers to gold nanoparticles and created surface micelles by changing the solvent from one that is favorable for the polymer to ...

Microcantilevers are masters of measurement

June 1, 2011

( -- Devices that look like tiny diving boards are a launching platform for research that could improve detergents and advance understanding of disease.

New nanoassembly technique is created

November 27, 2006

U.S. chemists at Rice University say they have discovered how to assemble gold and silver nanoparticle building blocks into larger structures.

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.