Award-winning alloys could reduce costs for chemical and petrochemical industries

Nov 06, 2006
Award-winning alloys could reduce costs for chemical and petrochemical industries
This macrophotograph compares commercial nickel-based Alloy 600 (top) and Argonne´s new alloy after 5,700 hours of exposure to the same metal-dusting environment at 593°C.

Materials developed by scientists at the U.S. Department of Energy's Argonne National Laboratory could provide large cost and energy savings to the chemical and petrochemical industries.

The new alloy materials — which won an R&D 100 award from R&D magazine as one of the top 100 scientific and technological innovations in the world during 2005 — are resistant to metal dusting, a type of degradation that occurs at elevated temperatures in hydrocarbon-containing atmospheres in which carbon activity is high.

Such environments are prevalent in chemical and petrochemical industries such as hydrogen-, methanol- and ammonia-reformers and in synthesis gas production plants. The degradation of metallic component materials into powder and the resulting damage make it difficult to maintain equipment used in these industries. Currently, almost all commercial alloys degrade by metal dusting corrosion.

"More than 50 years of previous research could not solve this problem," said Argonne researcher Ken Natesan. "The only available solution was to quench the high-temperature gases by lowering the working temperature, which results in energy loss and decreased product yield." In a study lasting several years, Natesan and Argonne researcher Zuotao Zeng established the role of carbon deposition in the mechanism leading to initiation and propagation of metal dusting. The work was conducted at both atmospheric and high pressures and simulated the gas chemistry — including the high steam content — prevalent in reformer environments.

This led to the development of alloys that resist this type of degradation and can be used to build equipment for the chemical and petrochemical industries. The Argonne-developed alloys performed significantly better than the currently available commercial alloys when tested in the metal dusting environment because they develop oxide scales that resist carbon attack. For example, an Argonne-developed alloy was still smooth and without pits after exposure to the same metal dusting environment for 5,700 hours at 593 degrees Celsius. Commercial alloys tested under the same conditions developed large pits.

Application of the Argonne-developed alloys in the future may enable a complete redesign of reforming systems with improved efficiency. Using these materials to build such industrial equipment could save 500 trillion Joules of energy each day, which is equivalent to 13 million standard cubic meters of natural gas each day.

Financially, this innovation could save $500 million to $1.3 billion per year in the hydrogen industry alone and could increase industrial productivity by enabling machinery to function with fewer maintenance shutdowns. Such savings will become increasingly important as hydrogen is used more as a source of energy.

While the initial application of the Argonne-developed alloys is in hydrogen and synthesis gas production plants, they can also be used for components such as waste heat boilers and gas bypass lines exposed to metal dusting environments in methanol and ammonia reformer plants. They can also be effective in gas-to-liquid plants in which natural gas is converted into liquid fuels.

Source: Argonne National Laboratory

Explore further: 3D printing technique explored to help treat type 1 diabetes

Related Stories

Why can't we design the perfect spacesuit?

Feb 19, 2015

So far, every spacesuit humans have utilized has been designed with a specific mission and purpose in mind. As of yet, there's been no universal or "perfect" spacesuit that would fit every need. For example, ...

How the bicycle got its spokes

Oct 13, 2014

The humble two-wheeler is a miracle of engineering. But just how did we get from the Penny Farthing to Kevlar tyres?

Repairing turbines with the help of robots

Jun 05, 2013

Compressor and turbine blades are important components in aircraft engines and gas turbines. When they become damaged, it is often cheaper to repair them than to buy replacements. Now there is a new robot-assisted ...

Recommended for you

Why Americans can't buy some of the best sunscreens

9 hours ago

With summer nearly here, U.S. consumers might think they have an abundance of sunscreen products to choose from. But across the Atlantic, Europeans will be slathering on formulations that manufacturers say provide better ...

Expanding the code of life with new 'letters'

9 hours ago

The DNA encoding all life on Earth is made of four building blocks called nucleotides, commonly known as "letters," that line up in pairs and twist into a double helix. Now, two groups of scientists are reporting ...

'Cold soak' process turns up the heat on wines

10 hours ago

Those pondering which elements make the best drop of wine may be surprised to learn different climates produce mixed results when it comes to wines made using the 'cold soak' process.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.