Award-winning alloys could reduce costs for chemical and petrochemical industries

November 6, 2006
Award-winning alloys could reduce costs for chemical and petrochemical industries
This macrophotograph compares commercial nickel-based Alloy 600 (top) and Argonne´s new alloy after 5,700 hours of exposure to the same metal-dusting environment at 593°C.

Materials developed by scientists at the U.S. Department of Energy's Argonne National Laboratory could provide large cost and energy savings to the chemical and petrochemical industries.

The new alloy materials — which won an R&D 100 award from R&D magazine as one of the top 100 scientific and technological innovations in the world during 2005 — are resistant to metal dusting, a type of degradation that occurs at elevated temperatures in hydrocarbon-containing atmospheres in which carbon activity is high.

Such environments are prevalent in chemical and petrochemical industries such as hydrogen-, methanol- and ammonia-reformers and in synthesis gas production plants. The degradation of metallic component materials into powder and the resulting damage make it difficult to maintain equipment used in these industries. Currently, almost all commercial alloys degrade by metal dusting corrosion.

"More than 50 years of previous research could not solve this problem," said Argonne researcher Ken Natesan. "The only available solution was to quench the high-temperature gases by lowering the working temperature, which results in energy loss and decreased product yield." In a study lasting several years, Natesan and Argonne researcher Zuotao Zeng established the role of carbon deposition in the mechanism leading to initiation and propagation of metal dusting. The work was conducted at both atmospheric and high pressures and simulated the gas chemistry — including the high steam content — prevalent in reformer environments.

This led to the development of alloys that resist this type of degradation and can be used to build equipment for the chemical and petrochemical industries. The Argonne-developed alloys performed significantly better than the currently available commercial alloys when tested in the metal dusting environment because they develop oxide scales that resist carbon attack. For example, an Argonne-developed alloy was still smooth and without pits after exposure to the same metal dusting environment for 5,700 hours at 593 degrees Celsius. Commercial alloys tested under the same conditions developed large pits.

Application of the Argonne-developed alloys in the future may enable a complete redesign of reforming systems with improved efficiency. Using these materials to build such industrial equipment could save 500 trillion Joules of energy each day, which is equivalent to 13 million standard cubic meters of natural gas each day.

Financially, this innovation could save $500 million to $1.3 billion per year in the hydrogen industry alone and could increase industrial productivity by enabling machinery to function with fewer maintenance shutdowns. Such savings will become increasingly important as hydrogen is used more as a source of energy.

While the initial application of the Argonne-developed alloys is in hydrogen and synthesis gas production plants, they can also be used for components such as waste heat boilers and gas bypass lines exposed to metal dusting environments in methanol and ammonia reformer plants. They can also be effective in gas-to-liquid plants in which natural gas is converted into liquid fuels.

Source: Argonne National Laboratory

Explore further: Did meteorites bring life's phosphorus to Earth?

Related Stories

Did meteorites bring life's phosphorus to Earth?

August 30, 2016

Meteorites that crashed onto Earth billions of years ago may have provided the phosphorous essential to the biological systems of terrestrial life. The meteorites are believed to have contained a phosphorus-bearing mineral ...

How the bicycle got its spokes

October 13, 2014

The humble two-wheeler is a miracle of engineering. But just how did we get from the Penny Farthing to Kevlar tyres?

Why can't we design the perfect spacesuit?

February 19, 2015

So far, every spacesuit humans have utilized has been designed with a specific mission and purpose in mind. As of yet, there's been no universal or "perfect" spacesuit that would fit every need. For example, the US ACES "pumpkin" ...

Repairing turbines with the help of robots

June 5, 2013

Compressor and turbine blades are important components in aircraft engines and gas turbines. When they become damaged, it is often cheaper to repair them than to buy replacements. Now there is a new robot-assisted technique ...

Recommended for you

The frontier fields: Where primordial galaxies lurk

September 28, 2016

In the ongoing hunt for the universe's earliest galaxies, NASA's Spitzer Space Telescope has wrapped up its observations for the Frontier Fields project. This ambitious project has combined the power of all three of NASA's ...

Scientists investigate unidentified radio sources

September 28, 2016

(—A team of researchers led by Andrea Maselli of the Institute of Space Astrophysics and Cosmic Physics of Palermo, Italy, has conducted an observational campaign of a group of unassociated radio sources with NASA's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.