New approach helps expand study of living fossils

November 17, 2006
Stromatolites
Intertidal mounds in back reef at Highborne Cay, Bahamas. Credit: University of Miami Rosenstiel School of Marine & Atmospheric Science

The origin of life lies in unique ocean reefs, and scientists from the University of Miami's Rosenstiel School of Marine & Atmospheric Science have developed an approach to help investigate them better.

A new article published in the November issue of Geology reveals how Dr. Miriam Andres' stromatolite investigation – the first of its kind – has begun to "fingerprint" ancient microbial pathways, increasing the understanding of how these reef-like structures form and offering a new way to explore the origins of these living records, which are considered to be the core of most living organisms.

Modern marine stromatolites are living examples of one of the earth's oldest and most persistent widespread ecosystems. Although rare today, these layered deposits of calcium carbonate are found in shallow marine seas throughout 3.4 billion-year-old geologic records. Ancient stromatolites represent a mineral record of carbonate chemistry and the evolution of early life.

In the Geology paper, Dr. Andres and colleagues point out that incorrect assumptions have been made in interpreting stromatolite data: phototrophs, or oxygen-producers, were actually dominated by heterotrophs, or oxygen-consumers, in their contribution to stromatolite formation.

"The motivation for this study is that in ancient stromatolites, direct evidence of microbial activity is lacking," Dr. Andres explained. "Stable isotopes have provided a powerful tool to 'fingerprint' microbial pathways and better understand the sedimentary structures we see in the geologic record. Surprisingly, no study to date has documented this process for modern marine stromatolites."

Stromatolites are the oldest known macrofossils, dating back over three billion years. Dominating the fossil record for 80 percent of our planet's history, stromatolites formed massive reefs in this planet's primitive oceans. While stromatolites look much like coral reefs, they are actually formed from living microorganisms, both animal and plant-like. These microorganisms trap and bind sand grains together and/or produce calcium carbonate to form laminated limestone mounds.

"We knew that the stromatolite ecosystem was dominated by photosynthetic cyanobacteria, and expected to see this reflected in a positive carbon isotopic value. However, we saw the exact opposite." Andres said.

"We still don't understand how stromatolites calicify," Dr. Andres said, referring to her research plans. "This information will be key to understanding how organisms form skeletons and when this process – leaving lasting impressions of historical biological data – first began."

Source: University of Miami Rosenstiel School of Marine & Atmospheric Science

Explore further: Bacteria could aid search for creatures on other planets

Related Stories

Bacteria could aid search for creatures on other planets

August 8, 2016

Could there be a way to find bacterial structures on another planet? And if so, how important might these bacteria be in making a planet life-friendly? These are some of the questions that could be answered through studies ...

Biologists surprised to find parochial bacterial viruses

March 4, 2008

Biologists examining ecosystems similar to those that existed on Earth more than 3 billion years ago have made a surprising discovery: Viruses that infect bacteria are sometimes parochial and unrelated to their counterparts ...

Seeking life's imprint in shifting desert sand

May 2, 2011

A group of scientists are hunched over, their eyes intently scanning the jumble of rocks on the ground. Every now and then, someone picks one up for closer inspection, turning it over and over again in their hand.

Recommended for you

Cosmic dust found in city rooftop gutters

December 7, 2016

(Phys.org)—A small team of researchers with Imperial College London, the Natural History Museum in London, Project Stardust in Norway and Université Libre de Bruxelles in Belgium, has found samples of cosmic dust in the ...

Climate change will drive stronger, smaller storms in US

December 5, 2016

The effects of climate change will likely cause smaller but stronger storms in the United States, according to a new framework for modeling storm behavior developed at the University of Chicago and Argonne National Laboratory. ...

Extreme downpours could increase fivefold across parts of the US

December 5, 2016

At century's end, the number of summertime storms that produce extreme downpours could increase by more than 400 percent across parts of the United States—including sections of the Gulf Coast, Atlantic Coast, and the Southwest—according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.