Scientists make atomic clock breakthrough

Oct 13, 2006

University of Nevada, Reno researchers Andrei Derevianko, Kyle Beloy, and Ulyana Safronova sat down six months ago and began work on a calculation that will help the world keep better time.

In competition with scientists at the University of New South Wales, the University team led by associate professor Derevianko conducted research that increased the accuracy of atomic clocks, and they did it without running a single experiment. The team's findings were published in Physical Review Letters.

"Our findings didn't take a lot of criticism," Derevianko said. "The results are too clear and obvious to be disputed."

In its research, the University team was able to isolate and explain a significant portion of the error in atomic clock output. The portion of error that the team studied has now been cut to one-fiftieth of its original size. The team's research was based solely on calculations, many of which were conducted on high performance computers.

Kyle Beloy, a third-year graduate student in the University's physics department, was the primary author of the paper containing the team's results and he was thrilled to play a role in such a notable find. Ulyana Safronova, a University research professor, also contributed to the findings.

In 2004, an Italian research team found some convincing evidence that suggested that atomic clocks were less accurate then previously thought. This evidence concerned the scientific community and gave the theory behind atomic clocks renewed international attention.

"It seemed like a good time to reexamine the problem," Derevianko said. "The uncertainty of the issue was a good primer for the research."

Atomic clock technology is based on the fact that atoms emit a fixed frequency. Lasers, which also have operating frequencies, can be calibrated so that their frequencies match that of a given atom. Since atomic frequencies are constant, syncing a laser with an atom and counting the laser's oscillations will always provide a steady measurement of time.

More accurate atomic clocks will lead to improved technologies. Most technical systems that employ satellites, including GPS technology, make use of atomic clocks; these technologies can now operate much more accurately.

The new findings are also paving the way for all kinds of new scientific experimentation. Extremely accurate measurements are required to make estimations about the behaviors of the universe. The extra time-keeping precision will allow scientists to explore hypotheses about the big-bang theory. The improved technology might even be accurate enough to provide evidence related to the controversial theory that universal constants, as in the amount of charge in an electron, are changing.

Source: University of Nevada, Reno

Explore further: How researchers listen for gravitational waves

Related Stories

About time: New record for atomic clock accuracy

Apr 21, 2015

In another advance at the far frontiers of timekeeping by National Institute of Standards and Technology researchers, the latest modification of a record-setting strontium atomic clock has achieved precision ...

Virtual telescope expands to see black holes

Apr 21, 2015

Astronomers building an Earth-size virtual telescope capable of photographing the event horizon of the black hole at the center of our Milky Way have extended their instrument to the bottom of the Earth—the ...

Recommended for you

How researchers listen for gravitational waves

1 hour ago

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

13 hours ago

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

19 hours ago

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

On-demand X-rays at synchrotron light sources

May 26, 2015

Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

FredB
3 / 5 (2) May 12, 2009
Stupid useless article. Whoever wrote it gave the most thin background imaginable- the part everyone knew anyway, and made no comment on what exactly was discovered that made the clocks more accurate. The article might as well have stopped after the headline. This article truly told us nothing.
smiffy
not rated yet May 12, 2009
I'm still trying to work out how they know that one atomic clock is better than another?
When comparing two state-of-the-art clocks who's to say which of the two is the most accurate? Because theory says so? Or are they calibrated against some astronomical standard?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.