Rice's single-pixel camera takes high-res images

October 2, 2006

For all their ease and convenience, there are few things more wasteful than digital cameras. They're loaded with pricy microprocessors that chew through batteries at a breakneck pace, crunching millions of numbers per second in order to throw out up to 99 percent of the information flowing through the lens.

Using some new mathematics and a silicon chip covered with hundreds of thousands of mirrors the size of a single bacterium, engineers at Rice University have come up with a more efficient design. Unlike a one megapixel camera that captures one million points of light for every frame, Rice's camera creates an image by capturing just one point of light, or pixel, several thousands of times in rapid succession. The new mathematics comes into play in assembling the high-resolution image – equal in quality to the one-megapixel image – from the thousands of single-pixel snapshots.

The research will be presented Oct. 11 at the Optical Society of America's 90th annual meeting, Frontiers in Optics 2006, in Rochester, New York.

The oddest part about Rice's camera may be that it works best when the light from the scene under view is scattered at random and turned into noise that looks like television tuned to a dead channel.

"White noise is the key," said Richard Baraniuk, the Victor E. Cameron Professor of Electrical and Computer Engineering. "Thanks to some deep new mathematics developed just a couple of years ago, we're able to get a useful, coherent image out of the randomly scattered measurements."

Baraniuk's collaborator Kevin Kelly, assistant professor of electrical and computer engineering, built a working prototype camera using a digital micromirror device, or DMD, and a single photodiode, which turns light into electrical signals. Today's typical retail digital camera has millions of photodiodes, or megapixels, on a single chip.

Rice's single-pixel camera takes high-res images

DMDs, which are fabricated by Texas Instruments and today used primarily in digital televisions and projectors, are devices capable of converting digital information to light and vice versa. Built on a microchip chassis, a DMD is covered with tiny mirrors, each about the size of a microbe, that are capable of facing only two directions. They appear bright when facing one way and dark when facing the other, so when a computer views them, it sees them as 1's or 0's.

In a regular camera, a lens focuses light, for a brief instant, onto a piece of film or a photodiode array called a CCD. In the single-pixel camera, the image from the lens is shined onto the DMD and bounced from there though a second lens that focuses the light reflected by the DMD onto a single photodiode. The mirrors on the DMD are shuffled at random for each new sample. Each time the mirrors shift, a new pixel value is recorded by the photodiode. In effect, the lens and DMD do what the power-hungry microchip in the digital camera usually does; they compress the data from the larger picture into a more compact form. This is why the technique goes by the name "compressive sensing."

Today, it takes about five minutes to take a picture with Rice's prototype camera, which fills an entire corner of one of the table's in Kelly's laboratory. So far, only stationary objects have been photographed, but Kelly and Baraniuk say they should be able to adapt the "time-multiplexed" photographic technique to produce images similar to a home snapshot because the mirrors inside DMDs can alter their position millions of times per second. However, their initial efforts are aimed at developing the camera for scientific applications where digital photography is unavailable.

"For some wavelengths outside the visible spectrum, it's often too expensive to produce large arrays of detectors," Kelly said. "One of the beauties of our system is that it only requires one detector. We think this same methodology could be a real advantage in terahertz imaging and other areas."

More information: www.dsp.ece.rice.edu/cs/cscamera/

Source: Rice University

Explore further: Imaging techniques set new standard for super-resolution in live cells

Related Stories

Dark Energy Survey finds more celestial neighbors

August 17, 2015

Scientists on the Dark Energy Survey, using one of the world's most powerful digital cameras, have discovered eight more faint celestial objects hovering near our Milky Way galaxy. Signs indicate that they, like the objects ...

Drawing in the third dimension

August 14, 2015

Imagine you could reach inside your old Batman comic, grab the Caped Crusader by the shoulder, and spin the whole scene around to get a new 3-D view.

The Compound Eye lossless digital imaging system

August 6, 2015

The imaging process is often affected by the field of view, wavefront aberration, ambient light, as well as the resolution of the optical imaging system and detector. In such cases, the image information of the object cannot ...

Review: Stand-alone gadgets trump all-in-one devices

August 5, 2015

When Apple announced new iPod music players a few weeks ago, many people asked why anyone would need iPods when smartphones can play music and more. I had that question myself—until I remembered I've been carrying an iPod ...

Recommended for you

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.