Creating Nanodevices for Delivery of Vaccines

October 17, 2006

A team of Yale biomedical engineers and cell biologists received a $1-million award from the National Science Foundation to develop “smart nanoparticles” for the delivery of vaccines.

Led by Tarek Fahmy, assistant professor of biomedical engineering, the team will apply the two-year, Nanoscale Interdisciplinary Research Team (NIRT) funding to develop a new class of nanomaterials with properties that mimic biological vectors like bacteria and viruses.

“While previous research has shown that safe, biocompatible materials can be engineered into nanoparticles that contain drugs or vaccines, we will develop new materials for vectors that interact specifically and predictably with cells,” said Fahmy. “Our nanosystems will be designed to evade the normal barriers and stimulate antigen-presenting cells of the immune system.”

The researchers propose to construct the “smart nanoparticle” vaccine delivery system using a simple, modular approach that can be easily modified to meet the requirements of any particular vaccine. They expect this approach to be safer and more effective than current methods of co-administering an adjuvant or delivering live attenuated or killed bacteria or viruses to amplify the immune response.

“We will specifically target antigen-presenting cells such as the dendritic cells that are uniquely responsible for initiating immune responses,” said Ira Mellman, chair and Sterling Professor of Cell Biology. “Targeting antigens to dendritic cells is emerging as a powerful novel strategy for vaccination.”

The researchers will also track the fate and biological activity of the “smart nanoparticles” in cultured dendritic cells (DCs), to optimize the fate of the internalized nanoparticles and the release of the encapsulated antigen.

Their approach promises flexibility for integrating different DC surface proteins, enabling optimal DC population targeting and priming, delivery of a wide variety of antigens of clinical importance, and assembly of different combinations of recognition and antigen modules for a broad-spectrum potent vaccine response.

Source: Yale University

Explore further: Researchers detail how to control shape, structure of DNA and RNA

Related Stories

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Team re-engineers virus to deliver therapies to cells

September 21, 2015

Stanford researchers have ripped the guts out of a virus and totally redesigned its core to repurpose its infectious capabilities into a safe vehicle for delivering vaccines and therapies directly where they are needed.

Flowing toward red blood cell breakthroughs

October 14, 2015

A team of researchers from Brown University and ETH Zurich the Universita da Svizzera Italiana (USI) and Consiglio Nazionale delle Ricerche (CNR) is using America's largest, most powerful supercomputer to help understand ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.