New Method Creates Porous, Multifunctional Silica Nanoparticles

October 30, 2006

Silica, the mineral of which sand is made, is generally inert in the body and can be modified easily using a variety of well-established chemical reactions. As such, researchers have considered silica an ideal candidate material from which to create multifunctional nanoparticles.

Indeed, several teams of investigators have crafted porous nanoparticles and shown that these materials hold promise as drug delivery vehicles, imaging agents, and even nanoscale collection devices for cancer markers.

Now, thanks to work from Chung-Yuan Mou, Ph.D., and colleagues at the National Taiwan University in Taipei, researchers have a new method for making silica nanoparticles that not only have carefully sized pores and are of a very narrow size distribution, but that are also magnetic and luminescent. The multiple functionality could enable investigators to create nanoparticles that can both image and treat tumors simultaneously.

This work appears in the journal Chemistry of Materials.

The investigators created their silica nanoparticles by starting with size-controlled iron nanocrystals and coating them with a porous silica shell. The researchers used mild chemical conditions for the coating step, allowing them to add dye molecules to the reaction mixture. The resulting particles, which are oblong in shape, have a magnetic core, and a porous, luminous shell.

Imaging experiments with these nanoparticles showed that they contained the proper magnetic properties to function as magnetic resonance imaging contrast agents. Additional experiments showed that cancer cells grown in culture take up these nanoparticles in amounts large enough for the particles to be seen using confocal fluorescence microscopy. The particles themselves were not toxic to cells at relatively large doses.

This work is detailed in a paper titled, “Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous.” This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: Nanobowls offer a way to magnetically deliver drugs in the body

Related Stories

Replacing oil with wood for the production of chemicals

July 6, 2016

Two research projects of the National Research Programme "Resource Wood" have developed new processes to replace petroleum with wood for the production of important chemicals. These precursors are used in the manufacture ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.