New Method Creates Porous, Multifunctional Silica Nanoparticles

October 30, 2006

Silica, the mineral of which sand is made, is generally inert in the body and can be modified easily using a variety of well-established chemical reactions. As such, researchers have considered silica an ideal candidate material from which to create multifunctional nanoparticles.

Indeed, several teams of investigators have crafted porous nanoparticles and shown that these materials hold promise as drug delivery vehicles, imaging agents, and even nanoscale collection devices for cancer markers.

Now, thanks to work from Chung-Yuan Mou, Ph.D., and colleagues at the National Taiwan University in Taipei, researchers have a new method for making silica nanoparticles that not only have carefully sized pores and are of a very narrow size distribution, but that are also magnetic and luminescent. The multiple functionality could enable investigators to create nanoparticles that can both image and treat tumors simultaneously.

This work appears in the journal Chemistry of Materials.

The investigators created their silica nanoparticles by starting with size-controlled iron nanocrystals and coating them with a porous silica shell. The researchers used mild chemical conditions for the coating step, allowing them to add dye molecules to the reaction mixture. The resulting particles, which are oblong in shape, have a magnetic core, and a porous, luminous shell.

Imaging experiments with these nanoparticles showed that they contained the proper magnetic properties to function as magnetic resonance imaging contrast agents. Additional experiments showed that cancer cells grown in culture take up these nanoparticles in amounts large enough for the particles to be seen using confocal fluorescence microscopy. The particles themselves were not toxic to cells at relatively large doses.

This work is detailed in a paper titled, “Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous.” This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: Researchers use laser to levitate, glowing nanodiamonds in vacuum

Related Stories

Nanovectors combine cancer imaging and therapy

February 9, 2015

Researchers at Imperial College London and the Laboratoire de chimie de la matière condensée de Paris (CNRS/Collège de France/UPMC) have designed and developed hybrid gold-silica nanoparticles, which are turning out to ...

Nanoparticles get a magnetic handle

October 9, 2014

A long-sought goal of creating particles that can emit a colorful fluorescent glow in a biological environment, and that could be precisely manipulated into position within living cells, has been achieved by a team of researchers ...

Recommended for you

Building a better liposome

October 13, 2015

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, ...

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.