Marine life stirs ocean enough to affect climate

October 13, 2006
Marine life stirs ocean enough to affect climate
The global distribution of phytoplankton power generation as measured by satellite. Credit: Courtesy of William Dewar, Florida State University

Oceanographers worldwide pay close attention to phytoplankton and with good reason. The microscopic plants that form the vast foundation of the marine food chain generate a staggering amount of power, and now a groundbreaking study led by Florida State University has calculated just how much –– about five times the annual total power consumption of the human world.

Physical and biological oceanographers led by FSU Professor William Dewar put the yearly amount of chemical power stored by phytoplankton in the form of new organic matter at roughly 63 terawatts, and that's a lot of juice: Just one terawatt equals a trillion watts. In 2001, humans collectively consumed a comparatively measly 13.5 terawatts.

What's more, their study found that the marine biosphere –– the chain of sea life anchored by phytoplankton –– invests around one percent (1 terawatt) of its chemical power fortune in mechanical energy, which is manifested in the swimming motions of hungry ocean swimmers ranging from whales and fish to shrimp and krill. Those swimming motions mix the water much as cream is stirred into coffee by swiping a spoon through it.

And the sum of all that phytoplankton-fueled stirring may equal climate control.

"By interpreting existing data in a different way, we have predicted theoretically that the amount of mixing caused by ocean swimmers is comparable to the deep ocean mixing caused by the wind blowing on the ocean surface and the effects of the tides," Dewar said.

In fact, he explained, biosphere mixing appears to provide about one third the power required to bring the deep, cold waters of the world ocean to the surface, which in turn completes the ocean's conveyor belt circulation critical to the global climate system.

Findings from the FSU-led study ("Does the marine biosphere mix the ocean?") will appear in the forthcoming issue of the Journal of Marine Research, adding the role of major power broker to phytoplankton's already impressive credentials.

Scientists for some time have known that the highly sensitive plants act as reliable signals of environmental changes at or near the ocean surface through sudden declines or rapid growth –– and they have suspected that phytoplankton affect as well as reflect climate change when large, sustained plant populations gulp carbon dioxide from the atmosphere during grand-scale photosynthesis.

But along with the new calculations that point to the marine biosphere's bigger-than-expected role in ocean mixing and climate control, Dewar and his colleagues also suggest that human and environmental decimation of whale and big fish populations may have had a measurable impact on the total biomixing occurring in the world's oceans.

Source: Florida State University, By Libby Fairhurst

Explore further: A technique to predict the energy in future oceanic waves

Related Stories

A technique to predict the energy in future oceanic waves

September 1, 2015

Marine energy has great future potential, according to the experts, but there is still a long way to go before it can be used on a large scale. Despite the problem of intermittency, wave energy has an advantage over wind ...

Saving Louisiana's coast

August 27, 2015

It was Day Nine after Katrina struck in 2005 when Sarah Mack's bosses at the Sewerage and Water Board of New Orleans called her back to work.

Examining the fate of Fukushima contaminants

August 18, 2015

An international research team reports results of a three-year study of sediment samples collected offshore from the Fukushima Daiichi Nuclear Power Plant in a new paper published August 18, 2015, in the American Chemical ...

Lobster population is shifting north; ocean warming blamed

August 18, 2015

The lobster population has crashed to the lowest levels on record in southern New England while climbing to heights never before seen in the cold waters off Maine and other northern reaches—a geographic shift that scientists ...

Recommended for you

Clues from ancient Maya reveal lasting impact on environment

September 3, 2015

Evidence from the tropical lowlands of Central America reveals how Maya activity more than 2,000 years ago not only contributed to the decline of their environment but continues to influence today's environmental conditions, ...

Ice sheets may be more resilient than thought

September 3, 2015

Sea level rise poses one of the biggest threats to human systems in a globally warming world, potentially causing trillions of dollars' worth of damages to flooded cities around the world. As surface temperatures rise, ice ...

Climate ups odds of 'grey swan' superstorms

August 31, 2015

Climate change will boost the odds up to 14-fold for extremely rare, hard-to-predict tropical cyclones for parts of Australia, the United States and Dubai by 2100, researchers said Monday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.