Insect population growth likely accelerated by warmer climate

October 30, 2006

Insects have proven to be highly adaptable organisms, able through evolution to cope with a variety of environmental changes, including relatively recent changes in the world's climate. But like something out of a scary Halloween tale, new University of Washington research suggests insects' ability to adapt to warmer temperatures carries an unexpected consequence -- more insects.

It appears that insect species that adapt to warmer climates also will increase their maximum rates of population growth, which UW researchers say is likely to have widespread affects on agriculture, public health and conservation.

Many studies have shown that insects readily adapt to the temperature of their environment. For example, those living in deserts easily tolerate high temperatures but are much less tolerant of cold temperatures than insects living in mountains. Now UW biology researchers have found that insect species that have adapted to warmer environments also have faster population growth rates. The research shows, in effect, that "warmer is better" for insects, said Melanie Frazier, a UW biology doctoral student.

"Enhanced population growth rates for butterflies might be a good thing, but enhanced growth rates for mosquito populations is much more dubious," said Frazier, who is lead author of the new research, published in the October edition of the journal The American Naturalist.

Co-authors are Raymond Huey, a UW biology professor, and David Berrigan, a former UW biology researcher now with the National Cancer Institute.

The findings suggest that evolutionary adaptation to climate warming will have profound ecological effects because rates of population growth eventually will alter entire ecosystems, Frazier said. In addition, key ecosystem characteristics such as species diversity and food webs are very sensitive to the population growth rates of the species living and interacting in those ecosystems.

She noted that biochemical adaptation to warmer temperature is not the only possible insect response to climate warming. Some species might evade warmer temperatures by moving to cooler habitats, or they might alter their seasonal activity patterns. Others might not be able to adapt adequately and could become extinct. But those that do adapt should have elevated rates of population growth.

"No matter which scenario plays out for a given species, local ecosystems will be profoundly altered," Frazier said.

Source: University of Washington

Explore further: Younger mangrove jacks weather climate change better than parents

Related Stories

Global warming to 'fuel migration, terrorism'

July 13, 2015

Global warming-induced food and water shortages may cause mass migration, competition for resources and state failure, providing fertile ground for conflict and terrorism, analysts warned Monday.

Rottnest's tropical corals found to thrive

July 9, 2015

Researchers are surprised at thriving coral growth at Rottnest Island, predicting its smaller coral communities could grow into a reef similar to the one that existed there in the Last Interglacial, approximately 130,000 ...

Grunter's life choices chronicled in fisheries study

July 2, 2015

Research into populations of the western striped grunter (Pelates octolineatus) on the lower west coast shows the species has a highly seasonal growth pattern and migrate between coastal and estuarine environments depending ...

Boreal peatlands not a global warming time bomb

June 10, 2015

To some scientists studying climate change, boreal peatlands are considered a potential ticking time bomb. With huge stores of carbon in peat, the fear is that rising global temperatures could cause the release of massive ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Amateur paleontologist finds rare fossil of fish in Arizona

September 3, 2015

Growing up, Stephanie Leco often would dig in her backyard and imagine finding fossils of a tyrannosaurus rex. She was fascinated with the idea of holding something in her hand that was millions of years old and would give ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.