Research to illuminate inner workings of 'protein nanomachines'

October 6, 2006
Research to illuminate inner workings of 'protein nanomachines'
PNNL researchers are developing a new approach for studying the molecular mechanisms of enzymes. They use a three-electrode platform to oxidize and reduce enzymes, then capture chemical reaction data with a single molecule spectroscope.

Development of new instrumentation and methods for studying the molecular mechanisms of enzymes are the goals of a three-year, $1.5 million contract awarded to Pacific Northwest National Laboratory by the Department of Energy's energy biosciences program.

Enzymes—the protein nanomachines of cells—have potential energy applications such as hydrogen production, fuel cell development and environmental remediation. However, to develop these applications, researchers must fill gaps in the fundamental understanding of enzymatic processes. Redox enzymes, those targeted in the new project, are essential to all life forms because they enable reaction cycles of reduction and oxidation through electron transfer within cells.

As a first step, PNNL researchers will couple an electrochemical method called "cyclic voltammetry" with single-molecule spectroscopy into a new electrochemical single-molecule spectrometer, or CVSMS. The new equipment will allow dynamic studies of fundamental enzymatic redox reactions.

Enzymes typically are unstable outside the cell, making them hard to study. In earlier work, the PNNL investigators discovered a way to stabilize enzymes and extend their lifespan by entrapping them into a nano-structured matrix.

The enzymes will be stabilized in the nano-structured matrix and then placed inside a miniature electrochemical cell that will deliver controlled electrical currents. As the tiny jolts of electricity affect catalytic reactions of the enzymes, the researchers will observe the single enzyme molecules in action. Using chemical signatures that the CVSMS generates, they will study the catalytic electron transfer processes.

To obtain the necessary enzyme variants, the research team will use a new cell-free process, rather than traditional cellular methods for protein production. The unique robotic instrument can produce up to 384 proteins or protein variants a day.

"We expect insights gained from this research to provide fundamental knowledge needed to understand the role of electron transfer in catalytic reactions," said principal investigator Eric Ackerman, adding that the research could be useful in a number of directions, including bioenergy and environmental remediation.

The research team also includes co-principal investigators Chenghong Lei, Dehong Hu and Chuck Windisch.

Source: PNNL

Explore further: A new class of ultra-stable enzyme formulations for industrial applications

Related Stories

New protein manufacturing process unveiled

September 10, 2015

Researchers from Northwestern University and Yale University have developed a user-friendly technology to help scientists understand how proteins work and fix them when they are broken. Such knowledge could pave the way for ...

Basic RNA enzyme research promises single-molecule biosensors

June 29, 2004

Research aimed at teasing apart the workings of RNA enzymes eventually may lead to ways of monitoring fat metabolism and might even assist in the search for signs of life on Mars, according to University of Michigan researcher ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.