New Hybrid Microscope Probes Nano-Electronics

October 27, 2006
New hybrid microscope probes nano-electronics
A false color SPIM image (b) reveals the same physical structure of a gold pattern on glass as an atomic force microscope image (a), but the high intensity regions in the SPIM image indicate that electron ejection is much more efficient at metal edge discontinuities. Credit: Credit: O.L.A. Monti, T.A. Baker, and D.J. Nesbitt/JILA

A new form of scanning microscopy that simultaneously reveals physical and electronic profiles of metal nanostructures has been demonstrated at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and University of Colorado at Boulder. The new instrument is expected to be particularly useful for analyzing the make-up and properties of nanoscale electronics and nanoparticles.

Scanning photoionization microscopy (SPIM), described in a new paper, combines the high spatial resolution of optical microscopy with the high sensitivity to subtle electrical activity made possible by detecting the low-energy electrons emitted by a material as it is illuminated with laser pulses. The technique potentially could be used to make pictures of both electronic and physical patterns in devices such as nanostructured transistors or electrode sensors, or to identify chemicals or even elements in such structures.

"You make images by virtue of how readily electrons are photoejected from a material," says NIST Fellow David Nesbitt, leader of the research group. "The method is in its infancy, but nevertheless it really does have the power to provide a new set of eyes for looking at nanostructured metals and semiconductors."

New Hybrid Microscope Probes Nano-Electronics
JILA's scanning photoionization microscope (SPIM) includes an optical microscope (in vacuum chamber, background) and an ultrafast laser (appears as blue, foreground). Credit: Credit: O.L.A. Monti, T.A. Baker, and D.J. Nesbitt/JILA

The JILA-built apparatus includes a moving optical microscopy stage in a vacuum, an ultrafast near-ultraviolet laser beam that provides sufficient peak power to inject two photons (particles of light) into a metal at virtually the same time, and equipment for measuring the numbers and energy of electrons ejected from the material.

By comparing SPIM images of nanostructured gold films to scans using atomic force microscopy, which profiles surface topology, the researchers confirmed the correlations and physical mapping accuracy of the new technique. They also determined that lines in SPIM images correspond to spikes in electron energy, or current, and that contrast depends on the depth of electrons escaping from the metal as well as variations in material thickness.

Work is continuing to further develop the method, which may be able to make chemically specific images, for example, if the lasers are tuned to different colors to affect only one type of molecule at a time.

Citation: O.L.A. Monti, T.A. Baker and D.J. Nesbitt. 2006. Imaging nanostructures with scanning photoionization microscopy. Journal of Chemical Physics, October 21.

Source: NIST

Explore further: Engineering researchers produce breakthrough for photography

Related Stories

Engineering researchers produce breakthrough for photography

September 29, 2015

A revolutionary breakthrough is underway at Dartmouth's Thayer School of Engineering, an innovation that may usher in the next generation of light sensing technology with potential applications in scientific research and ...

Student tackles labeling RNA without genetic modification

September 21, 2015

Overcoming limitations of super-resolution microscopy to optimize imaging of RNA in living cells is a key motivation for physics graduate student Takuma Inoue, who works in the lab of MIT assistant professor of physics Ibrahim ...

New consortium to create 'virtual cell'

September 17, 2015

Drawing on complementary strengths of two San Diego institutions, The Scripps Research Institute (TSRI) and the University of California, San Diego (UC San Diego) have formed a new consortium with a big mission: to map cells ...

New catalyst yields more accurate PSA test

September 16, 2015

Say you've been diagnosed with prostate cancer, the second-leading cause of cancer death in men. You opt for surgery to remove your prostate. Three months later, a prostate surface antigen (PSA) test shows no prostate cells ...

Recommended for you

Building a better liposome

October 13, 2015

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, ...

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.