GIOVE-A laser ranging campaign successful

Oct 03, 2006
GIOVE-A laser ranging campaign successful
Artist's impression of GIOVE-A in orbit. Credits: ESA

Fourteen laser ranging stations participated in a campaign to track ESA's GIOVE-A satellite during the spring and summer of 2006, providing invaluable data for the characterisation of the satellite's on-board clock. The campaign was coordinated by the International Laser Ranging Service (ILRS) and the GIOVE Processing Centre at ESA-ESTEC.

GIOVE-A, developed by Surrey Satellite Technology Ltd (UK), was launched from Baikonur Cosmodrome on 28 December 2005 and placed into a medium Earth orbit with an altitude of 23 260 km. Carrying a payload consisting of rubidium clocks, signal generation units and a phase array of individual L-band antenna elements, GIOVE-A started broadcasting Galileo signals on 12 January, securing the frequencies allocated by the International Telecommunications Union for the Galileo system.

The performance characterisation of the on-board clocks is significantly enhanced by the use of Satellite Laser Ranging (SLR), a high precision technique for orbit determination that is independent of the navigation signal generation. The technique is based on a global network of stations that measure the round flight time of ultra short laser pulses to satellites equipped with Laser Retro Reflectors (LRR). Laser ranging provides instantaneous range measurements of millimetre-level precision which can be used to derive accurate orbit data.

GIOVE-A is equipped with a LRR having 76 corner cubes, manufactured by IPIE of Russia, which provides a return energy 40% higher than GPS reflectors. The use of SLR data allows a more robust orbit determination, and thus a more accurate clock characterisation. In addition, certain satellite properties relevant to navigation, such as the offset between the centre of mass and the centre of the navigational phase centre, can be verified and calibrated.

The International Laser Ranging Service (ILRS) has agreed to support the GIOVE-A mission by providing SLR data during several tracking campaigns coordinated with the GIOVE Processing Centre at ESA-ESTEC. The first of these tracking campaigns took place between 22 May and 24 July 2006, with the participation of 14 SLR stations, distributed globally. In addition to confirming the good health of the LRR on GIOVE-A after launch, the SLR data has been essential for a health check and a preliminary performance characterisation of the on-board rubidium clocks.

With GIOVE-A, ESA is validating the critical new technologies needed for the Galileo system and preparing for the next phase of In-Orbit Validation (IOV). For this next step, four satellites will be launched. On completion of IOV, the four satellites will become the initial components of the operational Galileo constellation. Galileo is a joint initiative of the European Commission and the European Space Agency. It is the first satellite positioning and navigation system specifically designed for civilian purposes and will offer state-of-the-art services with outstanding performance and guaranteed accuracy, integrity, continuity and availability.

Source: ESA

Explore further: Why we need to keep adding leap seconds

Related Stories

Can lightning strike an indoor pool?

8 minutes ago

Two swimming pool weather policies have surprised me in recent years. One was when I showed up to swim laps at an outdoor pool as it was beginning to drizzle. "Come on in," I was told; as long as there was no lightning, the ...

Scientists unravel elusive structure of HIV protein

35 minutes ago

HIV, or human immunodeficiency virus, is the retrovirus that leads to acquired immunodeficiency syndrome or AIDS. Globally, about 35 million people are living with HIV, which constantly adapts and mutates ...

Device could detect driver drowsiness, make roads safer

38 minutes ago

Drowsy driving injures and kills thousands of people in the United States each year. A device being developed by Vigo Technologies Inc., in collaboration with Wichita State University professor Jibo He and ...

Why we need to keep adding leap seconds

58 minutes ago

Today at precisely 10am Australian Eastern Standard time, something chronologically peculiar will take place: there'll be an extra second between 09:59:59 and 10:00:00.

Recommended for you

Why we need to keep adding leap seconds

21 minutes ago

Today at precisely 10am Australian Eastern Standard time, something chronologically peculiar will take place: there'll be an extra second between 09:59:59 and 10:00:00.

Helping Europe prepare for asteroid risk

1 hour ago

Each year, astronomers worldwide discover over 1000 new asteroids or other space rocks that could strike our planet. And if one is spotted heading towards Earth, experts working in ESA and national emergency ...

Image: Increasingly active Comet 67P

1 hour ago

On 13 August 2015, Comet 67P/Churyumov–Gerasimenko will reach its closest point to the Sun along its 6.5-year long orbit. It will be around 185 million km from the Sun at 'perihelion', between the orbits ...

Image: Modeling Gaia's avionics on the ground

1 hour ago

A full-size working model of Gaia's internal systems arrived in Germany this week. The Avionics Model is mounted in a circular set-up representing the systems on the actual satellite, now orbiting the Sun–Earth ...

Video: Preparing the ExoMars spacecraft for 2016 launch

1 hour ago

The ExoMars spacecraft is almost complete. A joint mission between ESA and Roscosmos, it begins with the launch of the ExoMars orbiter in 2016 and carries an aerodynamically designed capsule containing a robotic lander. Getting ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.