New biomedical device uses nanotechnology to monitor hip implant healing

October 18, 2006

It is so small, you can barely see it, but a microsensor created by University of Alberta engineers may soon make a huge difference in the lives of people recovering from hip replacement surgery. The U of A research team has invented a self-powered wireless microsensor for monitoring the bone healing process after surgery--it is so tiny it can fit onto the tip of a pen.

"This microsensor not only reduces post-operation recovery time, it will also help reduce the wait time for patients needing artificial joint implants," says Dr. Walied Moussa, a professor in the Department of Mechanical Engineering.

During the healing process that follows joint replacement, bone grows and attaches to the pores on the surface of the implant creating greater fixation and stability of the joint. This process is known as osseointegration.

Using nanotechnology, the researchers built a device that measures and compares the relative osseointegration of a hip implant over time. The microsensor will be able to monitor the progression of the biological fixation between bone tissue and the implant.

The sensor is permanently implanted with the joint and is powered kinetically--it uses the natural movement of the patient's body as its power source. When it isn't being used, it stays dormant until a doctor asks it to start transmitting data.

Careful monitoring of how the patient is healing will help patients recover as quickly as possible and resume normal activities with less chance of over stressing the fracture during recovery and rehabilitation. It also allows the surgeon to more accurately decide when it is safe to send patients home from the hospital with their new implants.

"The ability to monitor and quantify this healing process is critical to orthopaedic surgeons in determining a patient's rehabilitation progress," says Moussa, who has a lab in the National Research Council's National Institute for Nanotechnology. "Until now, there has been no quantitative method for assessing osseointegration."

The device will also cut down the need for X-rays to monitor bone functionality, reducing costs and exposure to radiation. And the sensor can detect and identify bone less before it is even visible on a radiograph.

This technology will not only monitor bone healing at the time of surgery but also can determine when implants are worn out and need to be replaced. It will be valuable throughout the patient's lifetime for observing and maintaining the health of the implant. This research has the potential to transform biomedical practice with fascinating applications in artificial knees, hip replacement, and other joint therapy. Earlier this year, TEC Edmonton, a joint initiative of the U of A and Edmonton Economic Development Corp to advance technology transfer and commercialization, filed a provisional U.S. patent application for the work.

Source: University of Alberta

Explore further: Hip implants—metal wear impairs bone-forming cells' function

Related Stories

Groundbreaking implant technique to heal damaged bone

July 20, 2016

Patients treated for broken bones and fractures could soon benefit from an innovative implant technique pioneered by Norwegian company Corticalis in collaboration with Spain's Numat Biomedical, the University of Oslo, and ...

How brain implants can let paralysed people move again

July 1, 2016

Something as simple as picking up a cup of tea requires an awful lot of action from your body. Your arm muscles fire to move your arm towards the cup. Your finger muscles fire to open your hand then bend your fingers around ...

Technique uses 3-D weaving to grow a living hip replacement

July 18, 2016

With a goal of treating worn, arthritic hips without extensive surgery to replace them, scientists have programmed stem cells to grow new cartilage on a 3-D template shaped like the ball of a hip joint. What's more, using ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.