Ultrafast star escapes black hole

Sep 21, 2006

At last astronomers have a method to accurately measure the speed of stars within a galaxy containing a black hole. Dutch researcher Alessia Gualandris developed the algorithm for this in cooperation with the Astronomical Institute "Anton Pannekoek" and the Amsterdam Informatics Institute. The outcomes of this groundbreaking research provide convincing evidence for the relationship between galactic nuclei, heavy black holes and ultrafast stars in the Milky Way.

Galactic nuclei are the cores of galaxies, groups of thousands to millions of stars that are held together by gravity. As stars in the nucleus are so close together, interactions readily occur. If ultraheavy black holes (black holes several million times heavier than the sun) are also involved, stars can be slung out of the galaxy (for example the Milky Way) at speeds of more than one thousand kilometres per second. The astrophysical reasons for this are simple but can only be demonstrated with detailed calculations on specially developed computers.

The interdisciplinary research team of which Gualandris was a member (and that cooperated with Japanese, German and US researchers) spent the past four years developing algorithms and special computers in order to accurately calculate the dynamic and internal evolution of a galactic nucleus. However, these calculations can only be performed if the interactions between all of the stars are very accurately described. Gualandris developed a special new algorithm to perform these calculations efficiently on a parallel computer. With this it was at last possible to simulate systems of more than one million stars.

The research results are important for further research into galaxies, black holes and the interaction between these. Dense stellar systems like star clusters or galaxies are fascinating for both astrophysicists and computer scientists due to their enormous physical diversity and because calculations of their high mobility are numerically very complex. Up until now these calculations were difficult to perform as these systems are unsuitable for analytical methods and approximations are not accurate enough. With Gualandris' method the numerical problems have been solved and the origin of ultrafast stars in the Milky Way can be explained.

Source: NWO

Explore further: New technique for isolating sunny-day 'light' scattering could help illuminate Universe's birth

Related Stories

Extremely young stellar clump in the distant universe

May 15, 2015

As part of an observing program carried out with the Subaru Telescope and the Hubble Space Telescope, a group of researchers from the Service d'Astrophysique- Laboratoire AIM of CEA-IRFU led by Anita Zanella ...

Recommended for you

What was here before the solar system?

12 hours ago

The solar system is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The solar system has nothing on the universe. It's been around for 13.8 billion years, give or take a few hundred ...

Herschel's hunt for filaments in the Milky Way

14 hours ago

Observations with ESA's Herschel space observatory have revealed that our Galaxy is threaded with filamentary structures on every length scale. From nearby clouds hosting tangles of filaments a few light-years ...

Sharp-eyed ALMA spots a flare on famous red giant star

14 hours ago

Super-sharp observations with the telescope ALMA have revealed what seems to be a gigantic flare on the surface of Mira, one of the closest and most famous red giant stars in the sky. Activity like this in ...

NASA telescopes set limits on space-time quantum 'foam'

May 28, 2015

A team of scientists has used X-ray and gamma-ray observations of some of the most distant objects in the universe to better understand the nature of space and time. Their results set limits on the quantum ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.