Spinning new theory on particle spin brings science closer to quantum computing

September 7, 2006

Physicists at the U.S. Department of Energy's Argonne National Laboratory have devised a potentially groundbreaking theory demonstrating how to control the spin of particles without using superconducting magnets — a development that could advance the field of spintronics and bring scientists a step closer to quantum computing.

Spintronics, also known as spin electronics, is an emerging technology that looks to develop devices that exploit the quirky world of quantum physics, or physics at the incredibly small atomic level, particularly the up-or-down spin property of electrons. Conventional electronics use the charge of the electron. Spintronic devices would use both the spin and charge, achieving new functionality.

Scientists across the globe are racing to develop the spintronics field. It could revolutionize the computing industry with chips that are more versatile and exponentially more powerful than today's most cutting-edge technology.

Physicists Dimitrie Culcer and Roland Winkler, along with Christian Lechner of Regensburg University, Germany, will publish their theoretical findings in the Sept. 8 issue of Physical Review Letters. Culcer and Winkler are at Northern Illinois University, in addition to their affiliation with the Advanced Photon Source at Argonne.

“Our research illuminates a new pathway for generating and manipulating the spin in semiconductors,” Winkler said. “This is important, because the use of bulky superconducting magnets would be impractical in most devices.”

The physicists theorize that spin can be induced and manipulated by running a current through gallium arsenide, a common semiconductor, in what is known as spin-3/2 hole systems, which previously have been little studied. Hole systems are “missing electrons,” while the fraction 3/2 refers to the magnitude of the spin. Spin-3/2 hole systems are created in semiconductors by “doping” — introducing impurities that have one less electron compared to the host material.

Geometry also must play a crucial role in spin manipulation, according to the researchers. They propose development of a nano-sized and L-shaped device that allows for the exploitation of the newly discovered effects in spin-3/2 hole systems.

“Spin polarization is achieved as the current flows around the corner,” Winkler said.

“We believe we've discovered a much simpler way for inducing spin polarization,” he added. “We don't need a big magnet. The only requirement in our case is an electrical current in the sample, which is much easier to achieve than putting the sample in a magnetic coil. For an electrical current, you only need two contacts.”

Culcer said the researchers hope the publication will raise awareness of new and exciting physics that can be accomplished in spin-3/2 hole systems.

“We do basic research and do not work directly on information technology,” Culcer said. “But researchers working on quantum computing are primarily interested in spin systems. For the past 50 years, scientists have intensely studied what's known as spin-1/2 systems.

“One of our primary goals with this paper was to demonstrate what could be accomplished with spin-3/2 systems,” he said. “We hope to point scientists in a direction that offers the possibility of new applications and hopefully ways of manipulating information in the future.”

Source: Argonne National Laboratory

Explore further: NASA missions harvest a passel of 'pumpkin' stars

Related Stories

NASA missions harvest a passel of 'pumpkin' stars

October 27, 2016

Astronomers using observations from NASA's Kepler and Swift missions have discovered a batch of rapidly spinning stars that produce X-rays at more than 100 times the peak levels ever seen from the sun. The stars, which spin ...

Fermi finds record-breaking binary in galaxy next door

September 29, 2016

Using data from NASA's Fermi Gamma-ray Space Telescope and other facilities, an international team of scientists has found the first gamma-ray binary in another galaxy and the most luminous one ever seen. The dual-star system, ...

Technique mass-produces uniform, multilayered particles

October 6, 2016

Microencapsulation, in which a tiny particle of one material is encased within a shell made from another, is widely used in pharmaceuticals manufacturing and holds promise for other areas, such as self-repairing materials ...

Recommended for you

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Novel light sources made of 2-D materials

October 28, 2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.