Researcher Develops Sensor to Detect E.coli

September 24, 2006

As the Food and Drug Administration takes days to track down the source of the E. coli outbreak, Dr. Raj Mutharasan is optimizing a sensor that can enable growers to do the job themselves in a few minutes.

Mutharasan, a professor of chemical engineering at Drexel University, has developed an “intelligent” sensor technology that is precise, accurate and cheap. Costing just a few dollars, the sensor can provide a result within 10 minutes and can detect pathogens or bacteria, like E. coli, with a sensitivity of four cells per milliliter.

The standard detection process of E. coli bacteria in food processing takes about 24 hours. A sample is taken to a lab and placed on a nutrient agar. If E. coli is present, they will multiply on the auger and researchers can visibly identify them.

Mutharasan’s sensor can be placed into a palm-sized device that can be placed in the hands of food inspectors and growers, and is even cheap enough to one day enter the home.

The sensor uses E. coli antibodies to detect the bacteria in much the way that our bodies work. These antibodies are affixed to a narrow sliver of glass. Attached to the other end of the glass is a ceramic layer that generates voltage in response to applied mechanical stress.

A voltage is applied to the ceramic layer, making it expand and contract, causing the glass sliver to vibrate. The sensor detects changes in the glass sliver’s resonate frequency (the point where vibration is the greatest) and uses this to determine both the presence and concentration of E. coli bacteria.

Mutharasan is working with a company to commercialize the device and expects it to be in the hands of food safety experts soon. Other applications for the sensor technology include detecting prostate cancer without a biopsy and detecting Alzheimer’s disease.

Source: Drexel University

Explore further: Scientist develops model for robots with bacteria-controlled brains

Related Stories

Brighter future for bacteria detection

March 20, 2014

Ever wonder why fruits and vegetables sometimes hit the shelves contaminated by pathogenic bacteria such as listeria, E. coli, and salmonella?

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.