Researchers watch seeds in 3D and discover an unknown air path

September 15, 2006
Researchers watch seeds in 3D and discover an unknown air path
X-ray image of a seed with the seed-coat virtually removed showing the embryonic leaves (green) and stem (beige). Credit: Peter Cloetens

Researchers from the CNRS, the University J. Fourier (UJF) of Grenoble and the ESRF have recently visualised a plant seed in 3D using synchrotron light. This new view has revealed that there is a network of voids between the cells which may be used for oxygen storage that is needed for efficient germination. It is the first time that a living organism is studied using the holotomography technique at a third generation synchrotron source. The team behind the discovery publishes its results in PNAS.

Embryonic photosynthesis leads to the production of seed-internal oxygen that is important for seed development and quality. In order to visualize seed-internal structures that could serve for oxygen storage conventional microscopic methods could not be used because they require the seed to be cut thus leading to air escape. By using holotomography at the ESRF, scientists could get the full picture of an arabidopsis seed without any structural modification.

Researchers have identified individual cells within the seed and rendered them to show their three-dimensional organization. They have also distinguished an intercellular air network, which should represent an important circulation system for air and perhaps water during germination.

Researchers watch seeds in 3D and discover an unknown air path
A zoom on a stem section showing a virtual section through the seed together with the void network. Credit: Peter Cloetens

However, scientists can't yet assure that this is the path the oxygen follows to "feed" the seed: "Solving this question needs a nano-method to determine the exact composition of air in the network during seed formation, but unfortunately this method is not available yet", explains Silva Lerbs-Mache, the corresponding author of the paper.

The scientists used hard X-ray-based quantitative phase tomography at beamline ID19 to obtain three-dimensional images of an arabidopsis seed. This seed is a model plant for biologists and the first one the genome was sequenced. "This approach is to our knowledge the only imaging technique with the penetration capacity and imaged field size suited for an investigation at sub-micrometer resolution of an optically opaque object the size of a seed" explains Peter Cloetens, first author of the paper and scientist at the ESRF. It is applied for the first time to an autonomous living system, observed without object destruction, without staining, in air, and at room temperature.

The discovery of a void network opens the field of new research linking embryonic photosynthesis and the structure of the mature seed, in relation to seed quality, i. e. the capacity and vigour of germination. "The method could now be applied to study the seed structure of mutant plants that are deficient in germination and thus to link the mutation of one gene to changes in seed structure", explains Silva Lerbs-Mache.

Source: European Synchrotron Radiation Facility

Explore further: Driving myelination by actin disassembly

Related Stories

Driving myelination by actin disassembly

July 27, 2015

(Phys.org)—If a metallurgist wanted to determine how a blade was made they might cut a small cross section, mount, polish, and etch it, and then look at it under a microscope. They could probably tell right away whether ...

Could 'windbots' someday explore the skies of Jupiter?

July 23, 2015

Among designers of robotic probes to explore the planets, there is certainly no shortage of clever ideas. There are concepts for robots that are propelled by waves in the sea. There are ideas for tumbleweed bots driven by ...

Actuators that mimic ice plants

June 30, 2015

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge (USA) have devised ...

Sensors and drones: Hi-tech sentinels for crops

June 24, 2015

The precision agriculture sector is expected to grow at a high rate over the coming years. This new way of farming is already a reality in northwest Italy, where technologies are being used to keep plants in a good state ...

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.