NASA Mars Reconnaissance Orbiter Reaches Planned Flight Path

September 13, 2006
Mars Reconnaissance Orbiter
Artist's concept of Mars Reconnaissance Orbiter at Mars. Image credit: NASA/JPL

NASA's newest spacecraft at Mars has completed the challenging half-year task of shaping its orbit to the nearly circular, low-altitude pattern from which it will scrutinize the planet.

The Mars Reconnaissance Orbiter fired its six intermediate-size thrusters for 12.5 minutes Monday afternoon, Sept. 11, shifting the low point of its orbit to stay near the Martian south pole and the high point to stay near the north pole. The altitude of the orbit ranges from 250 kilometers (155 miles) to 316 kilometers (196 miles) above the surface.

"This maneuver puts us into our science orbit," said Dan Johnston, deputy mission manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "Getting to this point is a great achievement." Challenging activities remain ahead this month, such as deploying an antenna 10 meters (33 feet) long and removing a lens cap from a crucial instrument. The main science investigations will begin in November. During its two-year science phase, the mission will return more data about Mars than all previous Mars missions combined.

The flight team for the Mars Reconnaissance Orbiter sent the bus-sized spacecraft through the upper fringe of Mars' atmosphere 426 times between early April and Aug. 30. This "aerobraking" technique used friction with the Martian atmosphere to gradually decrease the highest-altitude point of the elliptical orbit from 45,000 kilometers (28,000 miles) to 486 kilometers (302 miles). The lowest-altitude point during aerobraking ranged from 98 to 105 kilometers (61 to 65 miles). It was carefully managed with input from researchers at JPL; Lockheed Martin Space Systems, Denver; NASA Langley Research Center, Hampton, Va., and elsewhere, based on spacecraft data and atmospheric fluctuations.

During the first three weeks after it arrived at Mars on March 10, the spacecraft took more than 35 hours to fly each very elongated orbit. During the final weeks of aerobraking, it was flying more than 10 orbits each day. "The pace of work got extremely demanding as we got down to two-hour orbits," Johnston said. "We had shifts working around the clock."

Monday's maneuver was the mission's biggest burn since the 27-minute firing to slow the spacecraft enough for Mars' gravity to snare it into orbit on March 10. The benefit of aerobraking is to avoid hauling unnecessary fuel to Mars for thrusters. Compared with relying solely on thruster firings to shrink and shape the orbit, aerobraking cut the mission's fuel needs by about 600 kilograms (about 1,300 pounds.) At least one small adjustment maneuver is still ahead.

One key remaining preparation for the mission's science payload is deployment of the antenna for the Shallow Subsurface Radar, an instrument provided by the Italian Space Agency. The antenna, developed by Northrop Grumman Space Technology Astro Aerospace, Carpinteria, Calif., remained safely stowed during aerobraking. Later this month, it will be released to unfold itself and extend 5 meters (16.4 feet) on either side of the spacecraft. After this ground-penetrating radar has been checked and calibrated, it "has the potential to detect buried channels, buried craters and ice layers," said Dr. Roberto Seu of the University of Rome La Sapienza, leader of the instrument's science team.

During aerobraking, a lens cap protected the mission's mineral-mapping Compact Reconnaissance Imaging Spectrometer for Mars. Removal of the cap this month will allow researchers to start checking and calibrating the spectrometer's performance. "Our most important goal is to find where past environments on Mars were wet long enough to leave a mineral signature on the surface," said Dr. Scott Murchie of Johns Hopkins University Applied Physics Laboratory, Laurel, Md., principal investigator for the spectrometer.

A series of trial observations by all the instruments will complete the spacecraft checkouts at the end of the month, including tests of all observing modes. In addition to data acquisition by the radar and spectrometer, images will be taken by the High Resolution Imaging Science Experiment and the Context Imager. The Mars Color Imager and Mars Climate Sounder will also begin monitoring Mars' atmosphere. During the next four years, these instruments on Mars Reconnaissance Orbiter will examine Mars to learn about processes that have affected it and to inspect potential landing sites for future missions. The spacecraft will also serve as a communications relay for Mars surface missions.

Source: NASA

Explore further: China unveils 2020 Mars rover concept: report

Related Stories

China unveils 2020 Mars rover concept: report

August 24, 2016

China has unveiled illustrations of a Mars probe and rover it aims to send to the Red Planet at the end of the decade in a mission that faces "unprecedented" challenges, state media said on Wednesday.

Fossilized rivers suggest warm, wet ancient Mars

August 23, 2016

Extensive systems of fossilised riverbeds have been discovered on an ancient region of the Martian surface, supporting the idea that the now cold and dry Red Planet had a warm and wet climate about 4 billion years ago, according ...

Most distant catch for ESA station

August 19, 2016

An ESA tracking station has acquired signals from the international Cassini spacecraft orbiting Saturn, across more than 1.4 billion km of space.

Engine burn gives Mars mission a kick

July 28, 2016

Following a lengthy firing of its powerful engine this morning, ESA's ExoMars Trace Gas Orbiter is on track to arrive at the Red Planet in October.

Recommended for you

WISE, Fermi missions reveal a surprising blazar connection

August 24, 2016

Astronomers studying distant galaxies powered by monster black holes have uncovered an unexpected link between two very different wavelengths of the light they emit, the mid-infrared and gamma rays. The discovery, which was ...

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

Test for damp ground at Mars streaks finds none

August 24, 2016

Seasonal dark streaks on Mars that have become one of the hottest topics in interplanetary research don't hold much water, according to the latest findings from a NASA spacecraft orbiting Mars.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.