Nanometer bridge combines magnetic and electronic worlds

September 29, 2006

A gadolinium layer of no more than one nanometer in thickness is capable of combining the magnetic world with electronics. In this way, it will be possible to put a magnetic memory element directly to a silicon transistor: the basic building block of information technology. Memory that is directly coupled to processing power, is an attractive and energy efficient option.

In the October issue of Nature Materials, PhD-student Byoung-Chul Min, together with colleagues of the MESA+ Institute for Nanotechnology and led by dr. Ron Jansen, publish this novel way of bridging two disciplines.

Magnetic memories, like the hard disk, are based on technology that is totally different from the technology of electronic circuits. Until this moment, no one succeeded in combining a magnetic layer with electronics. This would be an interesting combination because a magnetic memory doesn’t need additional energy to keep its content: once put into a memory state, it keeps this state. A magnetic layer, placed on a transistor, yields a powerful new component combining memory and processing power in a very direct way. This is good for cutting energy consumption, of vital importance in mobile devices.

The combination of magnetic material with silicon was not possible until now, although it was already done for other types of semiconductors like gallium arsenide. “We now demonstrate why it isn’t going to work”, Ron Jansen says. “If you put a layer of magnetic material directly on top of silicon, a barrier will form and the resistance is a factor of 100 million too large. The magnetic information can in no way pass the barrier and get into the silicon.”

With this in mind, the scientist tried to lower the barrier and come up with a solution that proves to be surprisingly effective. They have chosen the material Gadolinium, which has a special property: the so-called work function is very low. An electron can easily cross, out of the material an into the silicon. Electronics is in immediate contact with magnetics.

The thin layer of gadolinium is created via an evaporation process, enabling varying of the layer thickness with very high precision. The resistance can be varied over a large range, by a factor 100 million. The next step is to apply the magnetic material. Now that the contact problem has been solved, scientist can start designing new components in which electronic and magnetic technology is combined.

The research of Jansen c.s. has been done in the NanoElectronics group –still to be founded- of MESA+ Institute for Nanotechnology. It has been supported by Dutch national NanoNed programme. The scientists have closely cooperated with researchers of Sony Corporation.

The article, entitled, ‘Tunable spin-tunnel contacts to silicon using low-workfunction ferromagnets’ by B.C. Min, K. Motohashi, J.C. Lodder and R. Jansen is published in the October issue of Nature Materials.

Source: University of Twente

Explore further: Multilayer magnetic recording to realize high-density hard disk drives

Related Stories

'Pick and mix' smart materials for robotics

June 23, 2015

Researchers from the University of Cambridge have developed a simple 'recipe' for combining multiple materials with single functions into a single material with multiple functions: movement, recall of movement and sensing—similar ...

Engineers develop a computer that operates on water droplets

June 9, 2015

Computers and water typically don't mix, but in Manu Prakash's lab, the two are one and the same. Prakash, an assistant professor of bioengineering at Stanford, and his students have built a synchronous computer that operates ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.