Nanometer bridge combines magnetic and electronic worlds

Sep 29, 2006

A gadolinium layer of no more than one nanometer in thickness is capable of combining the magnetic world with electronics. In this way, it will be possible to put a magnetic memory element directly to a silicon transistor: the basic building block of information technology. Memory that is directly coupled to processing power, is an attractive and energy efficient option.

In the October issue of Nature Materials, PhD-student Byoung-Chul Min, together with colleagues of the MESA+ Institute for Nanotechnology and led by dr. Ron Jansen, publish this novel way of bridging two disciplines.

Magnetic memories, like the hard disk, are based on technology that is totally different from the technology of electronic circuits. Until this moment, no one succeeded in combining a magnetic layer with electronics. This would be an interesting combination because a magnetic memory doesn’t need additional energy to keep its content: once put into a memory state, it keeps this state. A magnetic layer, placed on a transistor, yields a powerful new component combining memory and processing power in a very direct way. This is good for cutting energy consumption, of vital importance in mobile devices.

The combination of magnetic material with silicon was not possible until now, although it was already done for other types of semiconductors like gallium arsenide. “We now demonstrate why it isn’t going to work”, Ron Jansen says. “If you put a layer of magnetic material directly on top of silicon, a barrier will form and the resistance is a factor of 100 million too large. The magnetic information can in no way pass the barrier and get into the silicon.”

With this in mind, the scientist tried to lower the barrier and come up with a solution that proves to be surprisingly effective. They have chosen the material Gadolinium, which has a special property: the so-called work function is very low. An electron can easily cross, out of the material an into the silicon. Electronics is in immediate contact with magnetics.

The thin layer of gadolinium is created via an evaporation process, enabling varying of the layer thickness with very high precision. The resistance can be varied over a large range, by a factor 100 million. The next step is to apply the magnetic material. Now that the contact problem has been solved, scientist can start designing new components in which electronic and magnetic technology is combined.

The research of Jansen c.s. has been done in the NanoElectronics group –still to be founded- of MESA+ Institute for Nanotechnology. It has been supported by Dutch national NanoNed programme. The scientists have closely cooperated with researchers of Sony Corporation.

The article, entitled, ‘Tunable spin-tunnel contacts to silicon using low-workfunction ferromagnets’ by B.C. Min, K. Motohashi, J.C. Lodder and R. Jansen is published in the October issue of Nature Materials.

Source: University of Twente

Explore further: Graphene and diamonds prove a slippery combination

Related Stories

Researchers exploring spintronics in graphene

May 06, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Putting a new spin on computing memory

Apr 22, 2015

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits ...

Data storage: Electrically enhanced recall

Dec 05, 2012

Random-access memory (RAM) is a fast electronic device used in computers to temporarily store data. Traditional RAM is based on the flow of electrical current for data processing. To make RAM faster, more ...

Recommended for you

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.