MIT forges greener path to iron production

Sep 12, 2006

MIT engineers have demonstrated an eco-friendly way to make iron that eliminates the greenhouse gases usually associated with its production.

The American Iron and Steel Institute (AISI) announced recently that the team, led by Donald R. Sadoway of the Department of Materials Science and Engineering, has shown the technical viability of producing iron by molten oxide electrolysis (MOE).

"What sets molten oxide electrolysis apart from other metal-producing technologies is that it is totally carbon-free and hence generates no carbon dioxide gases -- only oxygen," said Lawrence W. Kavanagh, AISI vice president of manufacturing and technology.

The work was funded by the AISI/Department of Energy Technology Roadmap Program (TRP). The TRP goal is to increase the competitiveness of the U.S. steel industry while saving energy and enhancing the environment. According to the AISI, the MIT work "marks one of TRP's breakthrough projects toward meeting that goal."

Unlike other iron-making processes, MOE works by passing an electric current through a liquid solution of iron oxide. The iron oxide then breaks down into liquid iron and oxygen gas, allowing oxygen to be the main byproduct of the process.

Electrolysis itself is nothing new -- all of the world's aluminum is produced this way. And that is one advantage of the new process: It is based on a technology that metallurgists are already familiar with. Unlike aluminum smelting, however, MOE is carbon-free.

"What's different this time is that we have the resources to take the time to unravel the underlying basic science," said Sadoway, the John F. Elliott Professor of Materials Chemistry. "No one has ever studied the fundamental electrochemistry of a process operating at 1600ÂșC. We're doing voltammetry at white heat!"

The result? "I now can confirm that in molten oxide electrolysis we'll see iron productivities at least five times that of aluminum, maybe as high as 10 times. This changes everything when it comes to assessing technical viability at the industrial scale."

MIT will continue further experiments to determine how to increase the rate of iron production and to discover new materials capable of extending the life of certain reactor components to industrially practical limits. This work will set the stage for construction of a pilot-scale cell to further validate the viability of the MOE process and identify scale-up parameters.

Source: Massachusetts Institute of Technology

Explore further: Collision course: ONR testing high-speed planing hulls to better understand wave slam

Related Stories

The history and development of batteries

Apr 30, 2015

Batteries are so ubiquitous today that they're almost invisible to us. Yet they are a remarkable invention with a long and storied history, and an equally exciting future.

Lack of oxygen in the groundwater

Apr 29, 2015

Spring has arrived in Europe with mild temperatures and sunshine. Where just a few weeks ago the ground was frozen and partly covered in snow and ice, it is now thawing. This doesn't only have an impact on ...

Iron-rich rocks could could hold signs of life

Apr 21, 2015

A robotic mission's search for life on Mars may seem worlds away from human scientists wandering around hot springs in Yellowstone National Park. But a study of the Yellowstone hot springs has revealed new ...

Recommended for you

Off-road run-ins for driverless fleets

13 hours ago

Carlos Holguin from the University of Rome, project coordinator with the CITYMOBIL2 project, talks about how the project is demonstrating automated road passenger transport through large and small-scale off-normal traffic ex ...

Image: View from an F-15D

16 hours ago

NASA pilot Jim Less and photographer Jim Ross pull their F-15D #897 aircraft away from a KC-135 refueling tanker. NASA is supporting the Edwards Air Force Base F-15 program with safety and photo chase expertise.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.