New Method Creates Nanowire Detectors Exactly Where Needed

September 25, 2006

There seems to be little doubt among cancer researchers that new detection systems using nanowires and microfluidics hold the promise of providing a quantum leap in the detection of cancer-related molecules and genes. However, researchers also know that there are significant technical barriers that must be overcome to realize that promise, including the current difficulty in creating microfluidic devices built around nanowire detectors.

Now, a team of investigators at the Nanosystems Biology Cancer Center, one of eight NCI-funded Centers of Cancer Nanotechnology Excellence, has developed a method for creating conducting polymer nanowires in place within microfluidic circuits.

The team, led by Hsian-Rong Tseng, Ph.D., of the University of California, Los Angeles, and James Health, Ph.D., of the California Institute of Technology, reported their work in the journal Chemical Communications.

The researchers create the nanowires using standard microelectrodes built into the microfluidics device specifically for the purpose of carrying out electrochemical reactions within the channels of the device. This allows them to use the microfluidic channels to introduce the precursor molecules, or monomers, needed to create the conducting polymer nanowires and trigger an electrochemical reaction at the exact place where the nanowires are needed to function as biomolecule detectors. This reaction causes the monomers to link to one another, forming the conducting polymer nanowires. This process can create two different types of polymer nanowires, one made of polyaniline, the other of polypyrrole. The chemical reactions are completed within 40 minutes.

Once formed, the nanowires can function immediately as detectors, with the electrodes used to form the nanowires now functioning as the circuitry that connects the nanowires to electrical signal recorders. The investigators demonstrate that these detectors are highly sensitive to changes in pH and to changing ammonia concentrations, though they note that these nanowires should be able to be used to detect a wide range of biomolecules.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, “Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Toward nanorobots that swim through blood to deliver drugs

Related Stories

Toward nanorobots that swim through blood to deliver drugs

June 17, 2015

Someday, treating patients with nanorobots could become standard practice to deliver medicine specifically to parts of the body affected by disease. But merely injecting drug-loaded nanoparticles might not always be enough ...

Team grows uniform nanowires

November 10, 2014

A researcher from Missouri University of Science and Technology has developed a new way to grow nanowire arrays with a determined diameter, length and uniform consistency. This approach to growing nanomaterials will improve ...

Targeting tumors using tiny gold particles

May 4, 2009

(PhysOrg.com) -- It has long been known that heat is an effective weapon against tumor cells. However, it's difficult to heat patients' tumors without damaging nearby tissues.

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.