New Method Creates Nanowire Detectors Exactly Where Needed

Sep 25, 2006

There seems to be little doubt among cancer researchers that new detection systems using nanowires and microfluidics hold the promise of providing a quantum leap in the detection of cancer-related molecules and genes. However, researchers also know that there are significant technical barriers that must be overcome to realize that promise, including the current difficulty in creating microfluidic devices built around nanowire detectors.

Now, a team of investigators at the Nanosystems Biology Cancer Center, one of eight NCI-funded Centers of Cancer Nanotechnology Excellence, has developed a method for creating conducting polymer nanowires in place within microfluidic circuits.

The team, led by Hsian-Rong Tseng, Ph.D., of the University of California, Los Angeles, and James Health, Ph.D., of the California Institute of Technology, reported their work in the journal Chemical Communications.

The researchers create the nanowires using standard microelectrodes built into the microfluidics device specifically for the purpose of carrying out electrochemical reactions within the channels of the device. This allows them to use the microfluidic channels to introduce the precursor molecules, or monomers, needed to create the conducting polymer nanowires and trigger an electrochemical reaction at the exact place where the nanowires are needed to function as biomolecule detectors. This reaction causes the monomers to link to one another, forming the conducting polymer nanowires. This process can create two different types of polymer nanowires, one made of polyaniline, the other of polypyrrole. The chemical reactions are completed within 40 minutes.

Once formed, the nanowires can function immediately as detectors, with the electrodes used to form the nanowires now functioning as the circuitry that connects the nanowires to electrical signal recorders. The investigators demonstrate that these detectors are highly sensitive to changes in pH and to changing ammonia concentrations, though they note that these nanowires should be able to be used to detect a wide range of biomolecules.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, “Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies

Related Stories

California farmers agree to drastically cut water use

3 hours ago

California farmers who hold some of the state's strongest water rights avoided the threat of deep mandatory cuts when the state accepted their proposal to voluntarily reduce consumption by 25 percent amid ...

Apple may deliver ways to rev up the iPad, report says

4 hours ago

MacRumors last month said that the latest numbers from market research firm IDC's Worldwide Quarterly Tablet Tracker revealed Apple stayed on as the largest vendor in a declining tablet market. The iPad ...

Architects to hatch Ecocapsule as low-energy house

17 minutes ago

Where people call home depends on varied factors, from poverty level to personal philosophy to vanity to community pressure. Ecocapsule appears to be the result of special factors, a team of architects applying ...

Recommended for you

Engineering phase changes in nanoparticle arrays

23 hours ago

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have just taken a big step toward the goal of engineering dynamic nanomaterials whose structure and associated properties can be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.