Massive Star Formation: Inside, Outside and All Around

September 27, 2006
Massive Star Formation: Inside, Outside and All Around
Artist's Conception of Young Star Showing Motions Detected in G24 A1: (1) Infall toward torus, (2) Rotation and (3) outflow. CREDIT: Bill Saxton, NRAO/AUI/NSF

Scientists think they know how stars the size of our Sun are formed, but the theory breaks down for much larger stars. How do they accumulate masses up to 10 times or more than that of our own Sun? Now, new observations using the National Science Foundation's Very Large Array (VLA) radio telescope near Socorro, N.M., may help solve the mystery.

Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form.

"We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery," said Maria Teresa Beltran, of the University of Barcelona in Spain.

Beltran and other astronomers from Italy and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature.

Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars.

"When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material," Beltran explained. "We know there are many stars bigger than that, so the question is, how do they get that much mass?"

One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows.

"If this model is correct, there should be material falling inward, rushing outward and rotating around the star all at the same time," Beltran said. "In fact, that's exactly what we saw in G24 A1. It's the first time all three types of motion have been seen in a single young massive star," she added.

The scientists traced motions in gas around the young star by studying radio waves emitted by ammonia molecules at a frequency near 23 GHz. The Doppler shift in the frequency of the radio waves gave them the information on the motions of the gas. This technique allowed them to detect gas falling inward toward a large "doughnut," or torus, surrounding the disk presumed to be orbiting the young star.

"Our detection of gas falling inward toward the star is an important milestone," Beltran said. The infall of the gas is consistent with the idea of material accreting onto the star in a non-spherical manner, such as in a disk. This supports that idea, which is one of several proposed ways for massive stars to accumulate their great bulk. Others include collisions of smaller stars.

"Our findings suggest that the disk model is a plausible way to make stars up to 20 times the mass of the Sun. We'll continue to study G24 A1 and other objects to improve our understanding," Beltran said.

Beltran worked with Riccardo Cesaroni and Leonardo Testi of the Astrophysical Observatory of Arcetri of INAF in Firenze, Italy, Claudio Codella and Luca Olmi of the Institute of Radioastronomy of INAF in Firenze, Italy, and Ray Furuya of the Japanese Subaru Telescope in Hawaii.

Source: National Radio Astronomy Observatory, NSF

Explore further: Do we need a new theory of gravity?

Related Stories

Do we need a new theory of gravity?

November 9, 2015

In the late 1990s physicists discovered, to their consternation, that the expansion of the universe is not slowing but accelerating. Nothing in the 'standard model of cosmology' could account for this, and so a new term was ...

Dark matter and particle acceleration in near space

November 9, 2015

Peering into darkness can strike fear into the hearts of some, but a new space telescope will soon peer into the darkness of "near space" (within a few thousand light years of Earth). Scientists are using the telescope to ...

Black hole awakens after 26 years

November 5, 2015

On 15 June 2015, V404 Cygni (V404 Cyg), a binary system comprising a sun-like star orbiting a black hole, woke up. A huge outburst of energy across the electromagnetic spectrum 'lit up' the sky. The last such outburst was ...

Swift spacecraft spots its thousandth gamma-ray burst

November 6, 2015

NASA's Swift spacecraft has detected its 1,000th gamma-ray burst (GRB). GRBs are the most powerful explosions in the universe, typically associated with the collapse of a massive star and the birth of a black hole.

Recommended for you

Tracking down the 'missing' carbon from the Martian atmosphere

November 24, 2015

Mars is blanketed by a thin, mostly carbon dioxide atmosphere—one that is far too thin to prevent large amounts of water on the surface of the planet from subliming or evaporating. But many researchers have suggested that ...

NEOWISE identifies greenhouse gases in comets

November 24, 2015

After its launch in 2009, NASA's NEOWISE spacecraft observed 163 comets during the WISE/NEOWISE prime mission. This sample from the space telescope represents the largest infrared survey of comets to date. Data from the survey ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.