Ferns provide model for tiny motors powered by evaporation

Sep 14, 2006
A cluster of actual sporangium

Scientists looked to ferns to create a novel energy scavenging device that uses the power of evaporation to move itself -- materials that could provide a method for powering micro and nano devices with just water or heat.

"We've shown that this idea works," said Michel Maharbiz, assistant professor of electrical engineering and computer science and principal investigator in the group that built the device. "If you build these things they will move. The key is to show that you can generate electricity from this."

As often happens, the research started while doctoral student Ruba Borno was exploring another idea entirely. Borno was interested in mimicking biological devices, specifically microchannels that plants use to transport water, so Maharbiz gave her a book on plants.

But something else in the book caught her attention – the section on how ferns spread their spores.

"It's essentially a microactuator," said Maharbiz, meaning that the fern sporangium transforms one form of energy, in this case heat via the evaporation of water, into motion. When the cells in the outer wall of the sporangium were water logged, the sporangium remained closed like a fist, storing the spores safely inside. But when the water in the outer wall evaporated, it caused the sporangium to unfurl and eject the spores into the environment.

The researchers examined some fern leaves under a microscope. They found that when exposed to light or heat or any evaporation-inducing event, the sporangia opened and released the spores.

"Once we saw that, we thought, ‘Oh, we have to build that,'" Maharbiz said.

The method for making the material is simple enough. A wafer is coated with silicone and the hit with light, causing a pattern. The residual pattern is lifted off and that is used for the device. It resembles a curved spine with equally spaced ribs fanning outward from the spine.

To make the device move, Borno said, they load the space between the ribs with water, and when the water evaporates, the surface tension of the water pulls on the tips of the ribs so that the tips move toward each other, straightening out the spine of the device. In this way, the closed device opens wide—it moves.

They plan to add electrical components to the device in an attempt to generate electricity. They predict that the device will be able to generate the same amount of electricity as other scavenging devices, say, a solar cell in a calculator.

The ideal application, Borno said, would be to power a remote sensor where it's impossible to change the batteries regularly.

Click here to see video.

Source: University of Michigan

Explore further: Researchers develop ultrahigh-resolution 3D microscopy technique for electric fields

Related Stories

Why the seahorse's tail is square

12 hours ago

Why is the seahorse's tail square? An international team of researchers has found the answer and it could lead to building better robots and medical devices. In a nutshell, a tail made of square, overlapping ...

Recommended for you

Could black phosphorus be the next silicon?

20 hours ago

As scientists continue to hunt for a material that will make it possible to pack more transistors on a chip, new research from McGill University and Université de Montréal adds to evidence that black phosphorus ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.