Watching DNA Repair in Real Time

September 20, 2006

Direct observations of DNA are giving new insights into how genetic material is copied and repaired.

"We can monitor the process directly, and that gives us a different perspective," said Roberto Galletto, a postdoctoral scholar at UC Davis and first author on a paper published Sept. 20 on the Web site of the journal Nature.

In E. coli bacteria, molecules of an enzyme called RecA attach themselves along a DNA strand, stretching it out and forming a filament. A piece of complementary DNA lines up along side it, and pieces of DNA can be swapped in to repair gaps in the original strand. A similar protein, called Rad51, does the same job in humans.

"How RecA and Rad51 assemble into filaments determines the outcome of DNA repair, but very little is known about how assembly is controlled," said senior author Stephen Kowalczykowski, professor in the sections of Microbiology and of Molecular and Cellular Biology and director of the Center for Genetics and Development at UC Davis. Genes that control the human gene, Rad51, have been linked to increased risk of breast cancer.

Galletto attached a short piece of DNA to a tiny latex bead and placed it in a flow chamber, held by laser beam "tweezers." Fluid flowing past made the DNA stream out like a banner. Then he nudged it into an adjacent channel containing fluorescently-tagged RecA. After short intervals of time, he moved it back to the first chamber to observe the results.

By repeatedly dipping the same piece of DNA into the fluorescent channel, the researchers could see the RecA form clusters of four to five molecules on the DNA. Once those clusters had formed, the DNA/RecA filament rapidly grew in both directions. The measurements made in those experiments will be the baseline for future studies of both RecA and Rad51, Kowalczykowski said.

The new work adapts an approach developed by Kowalczykowski and Ronald J. Baskin, professor of molecular and cellular biology, to study single enzymes at work unwinding DNA strands. That research was first published in Nature in 2001.

Source: UC Davis

Explore further: Team solves mystery associated with DNA repair

Related Stories

Team solves mystery associated with DNA repair

December 13, 2012

Every time a human or bacterial cell divides it first must copy its DNA. Specialized proteins unzip the intertwined DNA strands while others follow and build new strands, using the originals as templates. Whenever these proteins ...

Single-DNA images give clues to breast cancer

October 29, 2012

For the first time, researchers at the University of California, Davis, have watched single strands of DNA being prepped for repair. The research, published this week in the journal Nature, has implications for understanding ...

Study shows how DNA finds its match

February 8, 2012

It's been more than 50 years since James Watson and Francis Crick showed that DNA is a double helix of two strands that complement each other. But how does a short piece of DNA find its match, out of the millions of 'letters' ...

Recommended for you

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

Astronomers find star with three super-Earths

July 30, 2015

Astronomers said Thursday they had found a planetary system with three super-Earths orbiting a bright, dwarf star—one of them likely a volcanic world of molten rock.

Robotic insect mimics nature's extreme moves

July 30, 2015

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.