Cold Shot

Sep 12, 2006

If you want to ferret out uranium's hiding place in contaminated soil, freeze the dirt and zap it with a black light, an environmental scientist reported Tuesday at the American Chemical Society national meeting.

Scientists have long known that uranium salts under ultraviolet light will glow an eerie greenish-yellow in the dark. This phenomenon sent Henri Bequerel down the path that led to his discovery of radioactivity a century ago.

Others since noted a peculiar feature about the UV glow, or fluorescence spectra, of uranium salts: The resolution of the spectral fingerprint becomes sharper as the temperature falls.

Zheming Wang, a staff scientist at the Department of Energy's Pacific Northwest National Laboratory in Richland, Wash., has now dusted the frost off the files, applying a technique called cryogenic fluorescence spectroscopy to uranium in contaminated soil at a former nuclear fuel manufacturing site.

By cooling the sediments to minus 267 degrees Celsius, near the temperature of liquid helium, Wang and colleagues at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory hit a sample with UV laser on a contaminated sample to coax a uranium fluorescence intensity of more than five times that at room temperature.

What is more, other spectra that were absent at room temperature popped out when frozen, enabling Wang and colleagues to distinguish different forms of uranium from one another, including uranium-carbonate that moves readily underground and is a threat to water supplies.

Source: Pacific Northwest National Laboratory

Explore further: Researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion

Related Stories

Studying slimy substances for a cleaner environment

Mar 20, 2012

Extracellular polymeric substances, or EPS, are the slimy material that bacteria excrete and surround themselves with as they form biofilms. EPS are mostly water (up to 95%), but the remaining ingredients ...

Recommended for you

Biosensor may improve clinical diagnosis of influenza A

30 minutes ago

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

17 hours ago

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Researchers find 'decoder ring' powers in micro RNA

19 hours ago

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

DNA mutations get harder to hide

23 hours ago

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.