'Champagne supernova' challenges understanding of how supernovae work

September 20, 2006
'Champagne supernova' challenges understanding of how supernovae work
The supernova SNLS-03D3bb was discovered on April 24, 2003 in a small, young, star-forming galaxy, a satellite of the larger galaxy in this picture. Image on the left is before maximum brightness; at maximum brightness (right), the supernova was much brighter than its host.

An international team of astronomers led by a group at the University of Toronto has discovered a supernova more massive than previously believed possible. This has experts rethinking our basic understanding of how stars explode as supernovae, according to a paper to be published in Nature on September 21.

University of Toronto postdoctoral researcher Andy Howell, lead author of the study, identified a Type Ia supernova named SNLS-03D3bb in a distant galaxy 4 billion light years away that originated from a dense evolved star, termed a 'white dwarf,' whose mass is far larger than any previous example. Type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star.

Researchers say SNLS-03D3bb’s “obesity” has opened up a Pandora’s box on the current understanding of Type Ia supernovae and how well they can be used for precision cosmology.

Current understanding is that Type Ia supernova explosions occur when the mass of a white dwarf approaches 1.4 solar masses, or the Chandrasekhar limit. This important limit was calculated by Nobel laureate Subrahmanyan Chandrasekhar in 1930, and is founded on well-established physical laws. As such, decades of astrophysical research have been based upon the theory. Yet, somehow the star that went supernova as SNLS-03D3bb reached about two solar masses before exploding.

"It should not be possible to break this limit," says Howell, "but nature has found a way. So now we have to figure out how nature did it."

In a separate News & Views article on the research in the same issue of Nature, University of Oklahoma professor David Branch has dubbed this the “Champagne Supernova,” since extreme explosions that offer new insight into the inner workings of supernovae are an obvious cause for celebration.

The team speculates that there are at least two possible explanations for how this white dwarf got so fat before it exploded. One is that the original star was rotating so fast that centrifugal force kept gravity from crushing it at the usual limit. Another is that the blast was in fact the result of two white dwarfs merging, such that the body was only briefly more massive than the Chandrasekhar limit before exploding. Observations of the supernova were obtained at the Canada-France-Hawaii telescope and the Keck telescope, both located on Mauna Kea in Hawaii.

Since Type Ia supernovae usually have about the same brightness, they can be used to map distances in the universe. In 1998 they were used in the surprising discovery that the universe is accelerating. While the authors are confident that the discovery of a supernova that doesn't follow the rules does not undermine this result, it will make them more cautious about using them in the future.

University of Toronto postdoctoral fellow Mark Sullivan, a coauthor on the research, says, “This supernovae muddies the waters. We now know these rogue supernovae are out there which might throw off our cosmology results if we aren't careful about identifying them.”

Source: University of Toronto

Explore further: Observed cosmic rays may have come from two-million-year-old supernova

Related Stories

Scientists give 'outlaw' particles less room to hide

October 21, 2015

Studying the highest-energy particles in the cosmos provides scientists with a way to test how well they understand the cutting edge of physics. Recently, scientists using a giant particle detector at the South Pole have ...

Robotic laser astronomy on the rise

October 13, 2015

The world's first robotic laser adaptive optics system, developed by a team led by University of Hawaiʻi at Mānoa astronomer Christoph Baranec, will soon find a new home at the venerable 2.1-meter (83-inch) telescope at ...

Super Supernova: White Dwarf Star System Exceeds Mass Limit

March 15, 2010

(PhysOrg.com) -- An international team led by Yale University has, for the first time, measured the mass of a type of supernova thought to belong to a unique subclass and confirmed that it surpasses what was believed to be ...

Recommended for you

Hubble captures a galactic waltz

November 26, 2015

This curious galaxy—only known by the seemingly random jumble of letters and numbers 2MASX J16270254+4328340—has been captured by the NASA/ESA Hubble Space Telescope dancing the crazed dance of a galactic merger. The ...

Earth might have hairy dark matter

November 23, 2015

The solar system might be a lot hairier than we thought. A new study publishing this week in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California, proposes the existence of ...

Scientists detect stellar streams around Magellanic Clouds

November 23, 2015

(Phys.org)—Astronomers from the University of Cambridge, U.K., have detected a number of narrow streams and diffuse debris clouds around two nearby irregular dwarf galaxies called the Magellanic Clouds. The research also ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Jul 09, 2009

The key to the cosmos is recorded in 3,000 data points representing the rest masses of all of the atoms in the visible universe [ http://tinyurl.com/2otxps ]

See also the paper published in the Journal of Fusion Energy 20 (2001) 197-201 [ http://tinyurl.com/38un57 ].

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.