Detecting Cancer with Silica Nanoparticles

September 18, 2006

Tumor necrosis factor-alpha is a widely accepted biomarker for cancer, but the minute amounts of this protein circulating in blood makes detecting the molecule and measuring its concentration accurately a technological challenge.

Using silica nanoparticles labeled with the molecule guanine, researchers at the Pacific Northwest National Laboratory have now created a simple and inexpensive electrochemical method that detects tumor necrosis factor-alpha (TNF-æ) at clinically useful levels. Moreover, this assay is amenable to miniaturization, suggesting that it could be easily incorporated into a microfluidics-based assay system.

Reporting its work in the journal Analytical Chemistry, a research team headed by Yuehe Lin, Ph.D., loaded guanine molecules onto the surface of silica nanobeads that also contained a chemical anchor known as avidin. They also attached biotin, which binds with extraordinary strength to avidin, to an antibody that binds to the TNF-æ protein. The researchers attached a second antibody, one that binds to a different part of the TNF-æ protein, to a carbon electrode, which functions as the electrochemical sensor.

When TNF-æ is present in a solution added to the antibody-labeled electrode, it binds to the antibody. Adding the second antibody produces a sandwich around the TNF-æ molecule. At this point, the researchers then added their labeled silica nanoparticle, which binds to the antibody-TNF-æ sandwich. In a final step, the investigators added a molecule that reacts with the guanines on the nanoparticle, creating an electrical current that the electrode senses. The current flowing into the electrode is proportional to the amount of TNF-æ bound to the first antibody. Experiments with this system showed that the limit of detection for the device is approximately 2 picomolar, well within the range needed to detect physiological levels of TNF-æ.

This work is detailed in a paper titled, “Sensitive immunoassay of a biomarker tumor necrosis factor-æ based on poly(guanine)-functionalized silica nanoparticle label.” This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Related Stories

Recommended for you

New method for studying individual defects in transistors

December 6, 2016

Scientists from the University of Twente's MESA+ Research Institute have developed a method for studying individual defects in transistors. All computer chips, which are each made up of huge numbers of transistors, contain ...

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.