Research breakthrough for the protein factories of tomorrow

September 22, 2006

Using a kind of molecular ‘hip joint operation,’ researchers at Uppsala University have succeeded in replacing a natural amino acid in a protein with an artificial one. This step forward opens the possibility of creating proteins with entirely new properties that can be tailored to biotechnological applications. The study is presented in the latest issue of the prestigious journal Chemistry and Biology.

All proteins are made out of twenty amino acids. These natural building blocks determine the structure and function of the protein. Bengt Mannervik’s research team at Uppsala University has now demonstrated that artificial amino acids can be exchanged for a natural one that is critical to the stability and catalytic properties of the protein. The study opens the possibility of a new chemical biology where entirely new properties can be custom made for biotechnological applications.

Their research work has focused on an important enzyme, glutation transferase, which participates in the detoxification of the body from carcinogenic substances. The enzyme is made up of two identical protein structures that are joined by a contact similar to a key that fits a lock. The key is an amino acid that fits a cavity in the neighboring protein structure. In their work, the key has been replaced by artificial amino acids. Some exchanges yielded a fully active enzyme, while others did not.

The current study is a molecular equivalent to a hip joint operation, where the natural joint is replaced by an artificial part that is more robust. With the same methodology it is also possible not only to replace natural structures and functions but also to give proteins entirely new properties. Using simple chemistry, the twenty existent amino acids can be exchanged for hundreds of new chemical structures. In this way new proteins can be created with building blocks far beyond the limits of the genetic code.

Source: Uppsala Universitet

Explore further: Designing ultrasound tools with Lego-like proteins

Related Stories

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

The first stage of the cascade

August 19, 2016

G proteins are molecular switches on the insides of cell membranes. They convey important signals to the inner workings of the cells. The associated receptors are targeted by all kinds of medications. Scientists at the Technical ...

Down to the wire: Researchers and new bacteria

August 16, 2016

Scientists sponsored by the Office of Naval Research (ONR) have genetically modified a common soil bacteria to create electrical wires that not only conduct electricity, but are thousands of times thinner than a human hair.

Recommended for you

How Lyme disease bacteria spread through the body

August 25, 2016

Researchers have developed a live-cell-imaging-based system that provides molecular and biomechanical insights into how Lyme disease bacteria latch onto and move along the inside surface of blood vessels to reach key destinations ...

Rosetta captures comet outburst

August 25, 2016

In unprecedented observations made earlier this year, Rosetta unexpectedly captured a dramatic comet outburst that may have been triggered by a landslide.

ALMA finds unexpected trove of gas around larger stars

August 25, 2016

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) surveyed dozens of young stars—some Sun-like and others approximately double that size—and discovered that the larger variety have surprisingly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.