Research breakthrough for the protein factories of tomorrow

September 22, 2006

Using a kind of molecular ‘hip joint operation,’ researchers at Uppsala University have succeeded in replacing a natural amino acid in a protein with an artificial one. This step forward opens the possibility of creating proteins with entirely new properties that can be tailored to biotechnological applications. The study is presented in the latest issue of the prestigious journal Chemistry and Biology.

All proteins are made out of twenty amino acids. These natural building blocks determine the structure and function of the protein. Bengt Mannervik’s research team at Uppsala University has now demonstrated that artificial amino acids can be exchanged for a natural one that is critical to the stability and catalytic properties of the protein. The study opens the possibility of a new chemical biology where entirely new properties can be custom made for biotechnological applications.

Their research work has focused on an important enzyme, glutation transferase, which participates in the detoxification of the body from carcinogenic substances. The enzyme is made up of two identical protein structures that are joined by a contact similar to a key that fits a lock. The key is an amino acid that fits a cavity in the neighboring protein structure. In their work, the key has been replaced by artificial amino acids. Some exchanges yielded a fully active enzyme, while others did not.

The current study is a molecular equivalent to a hip joint operation, where the natural joint is replaced by an artificial part that is more robust. With the same methodology it is also possible not only to replace natural structures and functions but also to give proteins entirely new properties. Using simple chemistry, the twenty existent amino acids can be exchanged for hundreds of new chemical structures. In this way new proteins can be created with building blocks far beyond the limits of the genetic code.

Source: Uppsala Universitet

Explore further: Water heals a bioplastic

Related Stories

Water heals a bioplastic

September 1, 2015

A drop of water self-heals a multiphase polymer derived from the genetic code of squid ring teeth, which may someday extend the life of medical implants, fiber-optic cables and other hard to repair in place objects, according ...

The potential in your pond

August 14, 2015

Scientists at the John Innes Centre have discovered that Euglena gracilis, the single cell algae which inhabits most garden ponds, has a whole host of new, unclassified genes which can make new forms of carbohydrates and ...

How human cells can dissolve damaging protein aggregates

August 12, 2015

Cellular repair systems can dissolve aggregated proteins and now Heidelberg researchers have successfully decoded the fundamental mechanism that is key to dissolving these protein aggregates in human cells. Their in-vitro ...

Recommended for you

Scientists discover key clues in turtle evolution

September 2, 2015

A research team led by NYIT scientist Gaberiel Bever has determined that a 260-million year-old fossil species found in South Africa's Karoo Basin provides a long awaited glimpse into the murky origins of turtles.

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.