Technique used commonly in physics finds application in neuroscience

August 3, 2006

To understand how brain cells release compounds (or transmitters) used when the cells communicate with each other, Vladimir Parpura, associate professor of neuroscience, and Umar Mohideen, professor of physics, devised a new technique, used commonly in physics, that can be applied now to the study of a wide range of biological processes and interactions.

The researchers, who performed their experiments on brain proteins called SNAREs, published their results in the July issue of Biophysical Journal.

The technique, commonly referred to as Atomic Force Microscopy, uses the deflection of microfabricated membranes of silicon nitride, about 100 times thinner than the human hair, to measure very small forces. Using this technique on rat brain proteins, the researchers were able to measure the bonding between single protein molecules that are involved in the release of the neurotransmitters. They also were able to classify the strength of the molecular interactions (bonding) between 3 of the SNARE proteins that participate in the process.

SNARE proteins are located on vesicles (tiny membrane-encased packets that contain neurotransmitters or enzymes) and the plasma membrane of brain cells. These proteins are thought to play a key role in the final fusion of the synaptic vesicle with the plasma membrane, a process that makes communication between cells possible.

"Our results shed new light on how these proteins are involved in exocytosis - the process by which a biological cell releases substances into its environment," Parpura said. "We now understand better how these proteins interact at the molecular level and we can apply this to improve our detection of toxins acting on these proteins."

The researchers used the technique also to develop a sensor for detecting botulinum toxin, responsible for an often fatal type of food poisoning.

"Our sensor is extremely sensitive because it is capable of detecting interactions between two single molecules," Mohideen said. "As a result, the sample size you need for testing can be extremely small, of the order of a few molecules."

Source: University of California, Riverside

Explore further: Cells starved of oxygen and nutrients condense their DNA

Related Stories

Cells starved of oxygen and nutrients condense their DNA

November 9, 2015

Scientists at the Institute of Molecular Biology (IMB) have been able to see, for the first time, the dramatic changes that occur in the DNA of cells that are starved of oxygen and nutrients. This starved state is typical ...

Making heads and tails of embryo development

October 27, 2015

Proteins usually responsible for the destruction of virally infected or cancerous cells in our immune system have been found to control the release from cells of a critical growth factor governing head and tail development ...

Cellular damage control system helps plants tough it out

October 22, 2015

As food demands rise to unprecedented levels, farmers are in a race against time to grow plants that can withstand environmental challenges—infestation, climate change and more. Now, new research at the Salk Institute, ...

Researchers learn how to steer the heart—with light

October 19, 2015

We depend on electrical waves to regulate the rhythm of our heartbeat. When those signals go awry, the result is a potentially fatal arrhythmia. Now, a team of researchers from Oxford and Stony Brook universities has found ...

COMPASS method points researchers to protein structures

October 15, 2015

Searching for the precise, complexly folded three-dimensional structure of a protein can be like hacking through a jungle without a map: a long, intensive process with uncertain direction. University of Illinois researchers ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.