Scientists use electron beam to unravel the secrets of an 'atomic switch'

August 17, 2006
Scientists use electron beam to unravel the secrets of an 'atomic switch'
NIST researchers used a scanning tunneling microscope (STM) to move a single cobalt atom (blue sphere) in a small molecule back and forth between two positions on a crystal surface.

Scientists at the Commerce Department's National Institute of Standards and Technology (NIST) have used a beam of electrons to move a single atom in a small molecule back and forth between two positions on a crystal surface, a significant step toward learning how to build an "atomic switch" that turns electrical signals on and off in nanoscale devices.

The results, described in the Aug. 18, 2006, issue of Science,* are the first to be published about work at NIST's new Center for Nanoscale Science and Technology.

"It's still futuristic to talk about a real atomic switch but we're getting closer," says physicist Joseph Stroscio, lead author of the paper. In addition, by applying the findings to nanoscale fabrication on semiconductors and insulating thin films, it may be possible to develop new classes of electronic and magnetic devices constructed atom by atom.

In the work described in Science, NIST physicists used a custom-built, cryogenic scanning tunneling microscope (STM)--which provides a voltage and beam of electrons at its needle-like tip--to perform several different types of atomic scale measurements and manipulations. NIST theorists performed calculations of the atoms' electronic structure, which confirmed the experimental results.

Scientists use electron beam to unravel the secrets of an 'atomic switch'
Based on measurements of the "noise" made by the molecule at each pixel of a topographical image made with the STM, the researchers made a computer-generated spatial map of the atom switching speed and probability, showing that switching is most likely when the STM tip is positioned to the left of the cobalt atom (blue and white speckled area).

A molecular chain of one cobalt atom and several copper atoms set upon a surface of copper atoms was constructed atom by atom using the STM in an atom manipulation mode. Then the STM was used to shoot electrons at the molecular chain and its effect on the switching motion of the cobalt atom was measured.

In addition, the team used a "tunneling noise spectroscopy" technique to determine how long the atom stays in one place. This measurement method was developed by two of the authors based on their 2004 discovery that an atom emits a characteristic scratching sound when an STM is used to move the atom between two types of bonding sites on a crystal**.

"The two most important new findings," Stroscio says, "are an increased understanding of the science behind atomic switching and the development of a new measurement capability to spatially map the probability of an electron exciting the desired atom motion."

The scientists analyzed what happened to the atom switching rate as changes occurred in the STM voltage and in the current between the STM tip and surface. Above a threshold voltage of about 15-20 millivolts, the probability for switching per electron is constant, meaning that the electrons contain sufficient energy to move the cobalt atom. Higher currents result in faster switching.

The data suggested that a single electron boosts the molecule above a critical energy level, allowing a key bond to break so the cobalt atom can switch positions. The cobalt atom was less likely to switch as the molecular chain was extended in length from two to five copper atoms, demonstrating that the atom switching dynamics can be tuned through changes in the molecular architecture.

The researchers also found that the position of the STM tip is critical. They made this discovery by recording detailed noise measurements of the molecule with atomic scale resolution. An analysis of the noise enabled the team to make a spatial map of the switching speed and probability, showing that switching is most likely when the STM tip is positioned to the left of the cobalt atom. This finding is consistent with calculations of electronic structure and demonstrates the need to inject energy into a particular bond, according to the paper.

"This insight raises the possibility that molecular orbital analysis may be used to guide the design and control of single atom manipulation in nanostructures," the authors write.


*J.A. Stroscio, F. Tavazza, J.N. Crain, R.J. Celotta, and Anne M. Chaka. Electronically Induced Atom Motion in Engineered CoCun Nanostructures. Science. Aug. 18, 2006.

**J.A. Stroscio and R.J. Celotta. Controlling the Dynamics of a Single Atom in Lateral Atom Manipulation. Science Express, Sept. 9, 2004.

Source: National Institute of Standards and Technology

Explore further: Tunneling out of the surface

Related Stories

Tunneling out of the surface

July 9, 2015

A research team comprising scientists from Tohoku University, RIKEN, the University of Tokyo, Chiba University and University College London have discovered a new chemical reaction pathway on titanium dioxide (TiO2), an important ...

A molecule that switches on and off

June 10, 2011

A single molecule whose charge state and shape can be changed at will: the latest breakthrough at the CEMES should prove a key advantage in the race for miniaturization. In addition to controlling its charge in a completely ...

Study demonstrates an electronic switch based on stereoisomerism

February 25, 2015

As devices get smaller and smaller, scientists are running up against limits to how small one can feasibly construct a circuit using bulk materials. Molecular circuits offer a possible solution to overcoming these size constraints, ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.