Study reveals causes for freshwater increase in oceans

Aug 25, 2006
Ocean water

A new analysis of 50 years of changes in freshwater inputs to the Arctic and North Atlantic oceans may shed light on what’s behind the recently observed increase in freshwater in the North Atlantic. University of Texas at Austin marine scientist Dr. Jim McClelland and his colleagues report their findings in the Aug. 25 issue of the journal Science.

The first-of-its-kind, big-picture effort reveals that freshwater increases from Arctic Ocean sources—rivers, ice melt and precipitation—appear to be highly linked to a fresher North Atlantic.

“Our synthesis shows that the amount of excess freshwater coming into the oceans matches up with the amount of excess freshwater that’s being stored there,” says McClelland, assistant professor at the Marine Science Institute in Port Aransas, Texas. “Normally, oceanographers would think these changes in freshwater storage are associated with changes in ocean circulation and mixing patterns, but this shows that rivers, ice melt and precipitation have a large influence.”

Scientists contend that a significant increase of freshwater flow to the Arctic Ocean could alter global ocean circulation and influence the planet’s climate. One of the potential effects could be a cooling of Northern Europe within this century.

“The high-latitude freshwater cycle is one of the most sensitive barometers of the impact of changes in climate and broad-scale atmospheric dynamics because of the polar amplification of the global warming signal,” says Dr. Bruce Peterson, senior scientist at Marine Biological Laboratory (MBL). “It’s easiest to measure these changes in the Arctic and the better we understand this system, the sooner we will know what is happening to the global hydrologic cycle.”

The multidisciplinary team of scientists led by Peterson calculated annual and cumulative freshwater input for the latter half of the 20th century. The scientists compared the fluxes to measured rates of freshwater accumulation in the North Atlantic during the same time period.

They found that increasing river discharge and excess net precipitation on the ocean contributed the most freshwater (about 20,000 cubic kilometers) to the Arctic and high-latitude North Atlantic. Sea ice reduction provided about 15,000 cubic kilometers of freshwater, followed by about 2,000 cubic kilometers from melting glaciers.

The sum of inputs from all of the freshwater sources analyzed matched the amount and rate at which freshwater accumulated in the North Atlantic during much of the period from 1965 through 1995.

“This synthesis allows us to judge which freshwater sources are the largest, but more important shows how the significance of different sources have changed over the past decades and what has caused the changes,” says Peterson.

In recent years, much attention has been given to the observed freshening of the Arctic Ocean and North Atlantic and the potential impacts it may have on the Earth’s climate. Models predict that a significant increase of freshwater flow to the Arctic Ocean could slow or halt the Atlantic Deep Water formation, a driving factor behind the great “conveyor belt” current that is responsible for redistributing salt and thermal energy around the globe, influencing the planet’s climate.

“We’re observing changes that climate change scientists have been modeling for a while,” adds McClelland, “particularly those scientists that have been modeling increased net precipitation in response to global warming.”

“Theory is meeting reality and that’s a major, exciting aspect to this work.”

Source: University of Texas at Austin

Explore further: Image: Dronning Maud Land in Antarctica, as seen by ESA's Proba-1

Related Stories

Tide gauge network to be updated after 30 years at sea

May 13, 2015

The National Oceanography Centre (NOC) has been awarded funding to upgrade the South Atlantic Tide Gauge Network. This network has now been continuously operating in some of Earth's most remote places for ...

Image: Sentinel-1A satellite images Florida

Apr 24, 2015

The peninsula sits between the Gulf of Mexico to the west, and the Atlantic Ocean to the east. The large body of water at the top of the image is the freshwater Lake Okeechobee. Covering about 1900 sq km, ...

Recommended for you

Creating a stopwatch for volcanic eruptions

39 minutes ago

We've long known that beneath the scenic landscapes of Yellowstone National Park sleeps a supervolcano with a giant chamber of hot, partly molten rock below it.

Can lightning strike an indoor pool?

11 hours ago

Two swimming pool weather policies have surprised me in recent years. One was when I showed up to swim laps at an outdoor pool as it was beginning to drizzle. "Come on in," I was told; as long as there was no lightning, the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.