Probing Question: What happened before the Big Bang?

August 3, 2006
Red explosion
Red explosion. Credit iStock

The question of what happened before the Big Bang long has frustrated cosmologists, both amateur and professional.

Though Einstein's theory of general relativity does an excellent job of describing the universe almost back to its beginning, near the Big Bang matter becomes so dense that relativity breaks down, says Penn State physicist Abhay Ashtekar. "Beyond that point, we need to apply quantum tools that were not available to Einstein."

Now Ashtekar and two of his post-doctoral researchers, Tomasz Pawlowski and Parmpreet Singh, have done just that. Using a theory called loop quantum gravity, they have developed a mathematical model that skates right up to the Big Bang -- and steps through it. On the other side, Ashtekar says, exists another universe with space-time geometry similar to our own, except that instead of expanding, it is shrinking. "In place of a classical Big Bang, there is in fact a quantum Bounce," he says.

Loop quantum gravity, one of the leading approaches to the unification of general relativity with quantum physics, was pioneered at the Institute of Gravitational Physics and Geometry at Penn State, which Ashtekar directs. The theory posits that space-time geometry itself has a discrete "atomic" structure, Ashtekar explains. Instead of the familiar space-time continuum, the fabric of space is made up of one-dimensional quantum threads. Near the Big Bang, this fabric is violently torn, and these quantum properties cause gravity to become repulsive, rather than attractive.

While the idea of another universe existing prior to the Big Bang has been proposed before, he adds, this is the first mathematical description that systematically establishes its existence and deduces its space-time geometry.

"Our initial work assumes a homogenous model of our universe," Ashtekar acknowledges. "However, it has given us confidence in the underlying ideas of loop quantum gravity. We will continue to refine the model to better portray the universe as we know it and to better understand the features of quantum gravity."

Source: By Barbara Kennedy, Research/Penn State

Explore further: Our Universe: A Quantum Loop

Related Stories

Our Universe: A Quantum Loop

April 25, 2006

“There are two classical branches of the universe connected by a quantum bridge. This connects the former collapse with the current expansion.” While Abhay Ashtekar and his colleagues, Tomasz Pawlowski and Parampreet ...

Theorists apply loop quantum gravity theory to black hole

May 31, 2013

(Phys.org) —Physicists Rodolfo Gambini and Jorge Pullin of University of the Republic in Montevideo, Uruguay, and Louisiana State University respectively, have applied the theory of Loop Quantum Gravity (LQG) to a simplified ...

Researchers Look Beyond the Birth of the Universe

May 12, 2006

According to Einstein’s general theory of relativity, the Big Bang represents The Beginning, the grand event at which not only matter but space-time itself was born. While classical theories offer no clues about existence ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.