Physicists make first 'molecular movie' of light

August 10, 2006
Physicists make first ‘molecular movie’ of light
Femtosecond x-ray pulses are used to detect the ultra-fast motion of charged atoms in a THz light field. Credit: University of Oxford

Scientists have made the first ‘molecular movie’ of the elementary interaction between light and matter. They measured what happens on a microscopic level when light travels through a medium in a collaborative project involving Oxford University, the Lawrence Berkeley Laboratory in California, and the Massachusetts Institute of Technology.

The lead author of the study published in Nature, Dr Andrea Cavalleri at the Oxford University Department of Physics, said: ‘We’ve all seen how a stick in a pond appears to be at a different angle depending on whether we look at it from outside or inside the water. At a microscopic level, this effect depends on how stiff atomic bonds are, and with how much delay atoms and electrons respond when they are placed in the rapidly wiggling electric field of light.

‘If you want to understand the propagation of light at microscopic level, especially in some the complex materials that are of interest for modern opto-electronic applications, you need to make a ‘molecular movie’ of how the atoms and electrons wiggle in the light field. To do so, you need to find a camera with an extremely quick shutter speed – that of a handful of femtoseconds (which is less than one thousandth of a billionth of a second).

‘This very fast timescale can be reached with modern laser technology – but lasers can’t see where the constituents atoms actually are. If you want to see this ‘shape’ of a molecule you need x-rays, but there are currently no x++-ray beams with short enough pulses to take snapshots of atomic motions.

‘What we have managed to do is combine ultra-fast laser pulses with electron beams in a particle accelerator, deflecting a small slice of the long electron pulse on a separate orbit of the accelerator. Thus, these electrons radiated short enough x-ray pulses to measure elementary atomic motions on the femtosecond timescale. This enabled us to measure the motion of charged atoms on the ultra-fast timescale with an accuracy of less than one thousandth of one billionth of a meter. This means we are capable of resolving in time the displacements of atoms by less than one atomic nucleus.

‘This technology can now be applied to other elementary processes at the microscopic level, and we can measure their displacements with unprecedented speed and resolution.’

Source: University of Oxford

Explore further: Graphene oxide's secret properties revealed at atomic level

Related Stories

Graphene oxide's secret properties revealed at atomic level

August 21, 2015

Since its discovery, graphene has captured the attention of scientists and engineers for its many extraordinary properties. But graphene oxide—an oxidized derivative of graphene—largely has been viewed as graphene's inferior ...

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

Structural discoveries could aid in better drug design

August 25, 2015

F. Scott Fitzgerald once said that the test of a first-rate intelligence is the ability to hold two opposed ideas in mind at the same time and still retain the ability to function. Now, scientists from the Florida campus ...

Recommended for you

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.