Nanotube Coating Meshes with Living Cells

August 14, 2006

Using a polymer coating that mimics part of a cell’s outer membrane, a team of investigators at the University of California, Berkeley, have developed a versatile method for targeting carbon nanotubes to specific types of cells. This new coating could spur the development of new anticancer agents that rely on the unique physical characteristics of carbon nanotubes.

Carolyn Bertozzi, Ph.D., and her colleagues created sugar-based polymers, or glycopolymers, that mimic those found on the outside of cells. Cells use different glycopolymers as identifiers that tell other cells what their function is in the body

Reporting their work in the Journal of the American Chemical Society, the researchers demonstrated that they could attach this coating to carbon nanotubes to form a stable cell-like surface on the nanotubes. The researchers then used a protein produced by a particular type of snail, one that binds to the exact sugar used to make the nanotube coating, to act as a crosslinker between the coated nanotubes and cells possessing the exact same glycopolymer on their outer membranes. The researchers note that by using different glycoprotein-crosslinking protein pairs it should be possible to target distinct types of cells based on their membrane glycoprotein fingerprint.

To test whether these coated nanotubes might be toxic to cells, the investigators mixed the coated nanotubes with two different types of cells growing in culture. The researchers found that the coated nanotubes had no effect on the growth of these cells. In contrast, uncoated nanotubes inhibited significantly the growth of both types of cells.

This work is detailed in a paper titled, “Interfacing Carbon Nanotubes with Living Cells.” Investigators from the Lawrence Berkeley National Laboratory also participated in this study. This paper was published online in advance of print publication. An abstract is available at the journal’s website.

Source: National Cancer Institute

Explore further: New nanomaterial maintains conductivity in 3-D

Related Stories

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Biological tools create nerve-like polymer network

August 24, 2015

Using a succession of biological mechanisms, Sandia National Laboratories researchers have created linkages of polymer nanotubes that resemble the structure of a nerve, with many out-thrust filaments poised to gather or send ...

Focused laser power boosts ion acceleration

August 7, 2015

An international team of physicists has used carbon nanotubes to enhance the efficiency of laser-driven particle acceleration. This significant advance brings compact sources of ionizing radiation for medical purposes closer ...

Manipulating cell membranes using nanotubes

June 1, 2015

Japanese researchers have developed a targeted method for opening up cell membranes in order to deliver drugs to, or manipulate the genes of, individual cells.

Recommended for you

Building a better liposome

October 13, 2015

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, ...

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.