'Mint' pain killer takes leaf out of ancient medical texts

August 21, 2006

A new synthetic treatment inspired by ancient Greek and Chinese remedies could offer pain relief to millions of patients with arthritis and nerve damage, a new University of Edinburgh study suggests.

The Greek scholar Hippocrates treated sprains, joint pains and inflammation by cooling the skin, and traditional Chinese remedies used mint oil to the same end. Now scientists have discovered that cooling chemicals which have the same properties as mint oil have a dramatic pain-killing effect when applied in small doses to the skin.

Unlike conventional pain killers, these compounds are likely to have minimal toxic side-effects, especially because they are applied externally to the skin. This should mean they are ideal for chronic pain patients for whom conventional pain killers often do not work.

The Edinburgh study sets out exactly how the 'mint oil' compounds (and related more powerful chemicals) work. They act through a recently discovered receptor (a protein which is capable of binding with these chemicals) which is found in a small percentage of nerve cells in the human skin. The scientists have found that when this receptor, called TRPM8, is activated by the cooling chemicals or cool temperatures, it inhibits the 'pain messages' being sent from the locality of the pain to the brain. Thus, the new treatment makes good use of the body's own mechanisms for killing pain.

The findings would doubtless have been of interest to Hippocrates, the founding father of modern medicine. Writing in the fifth century BC, in chapter 5 of his classic text, Aphorisms, he stated: "Swellings and pains in the joints, ulceration, those of a gouty nature, and sprains, are generally improved by a copious affusion of cold water, which reduces the swelling, and removes the pain; for a moderate degree of numbness removes pain."

Professor Susan Fleetwood-Walker, who jointly led the study with Dr Rory Mitchell, says:

"This discovery of the pain-relieving properties of mint oil and related compounds has great potential for alleviating the suffering of millions of chronic pain patients, including those with arthritis or those who have had nerve damage or spinal injury following major accidents. Conventional painkillers such as morphine are often ineffective in cases of chronic pain, and simply lowering the temperature of the skin is too inexact."

"Our discovery means that patients can be given low doses of a powerful pain killer, delivered through the skin, without side effects. We hope clinical trials on the compounds will begin within the year."

Source: University of Edinburgh

Explore further: Elastic drug delivery technology releases drugs when stretched

Related Stories

Oxycodone Effective Against Shingles Pain

March 27, 2009

(PhysOrg.com) -- The painkiller oxycodone is effective at treating the acute pain of shingles, an illness that often causes severe pain which can become long-lasting and sometimes even permanent.

Saving cancer patients' skin

March 27, 2008

Becky Sasaki has the quick laugh and easy smile of a woman who continues to thrive despite her four-year wrestling match with lung cancer. She still works every day in the family business, heads out for Thai food with her ...

Recommended for you

Light-optics research could improve medical imaging

October 13, 2015

A team of researchers, including The University of Queensland's Dr Joel Carpenter, has developed echo-less lights that could improve medical imaging inside the body, leading to less-intrusive surgery.

Study sees powerful winds carving away Antarctic snow

October 13, 2015

A new study has found that powerful winds are removing massive amounts of snow from parts of Antarctica, potentially boosting estimates of how much the continent might contribute to sea level. Up to now, scientists had thought ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.