'Hourglass Figure' Points to Magnetic Field's Role in Star Formation

August 11, 2006
'Hourglass Figure' Points to Magnetic Field's Role in Star Formation
The protostellar system NGC 1333 IRAS 4A is the first textbook example of an hourglass-shaped magnetic field (shown by dashed red lines on this color-coded submillimeter image). The pear-shaped green and red region marks the locations of two still-forming stars. Gravity is pulling the gas and dust of this interstellar cloud clump inward, warping the magnetic field in the process. Taken with the Smithsonian's Submillimeter Array, this image is about 7 arcseconds on a side, which translates to a physical size of 2,700 astronomical units (using a distance to the system of 980 light-years). Image credit: J. Girart (CSIC-IEEC), R. Rao (ASIAA) and D. Marrone (CfA)

Long predicted by theory, the Smithsonian's Submillimeter Array has found the first conclusive evidence of an hourglass-shaped magnetic field in a star formation region. Measurements indicate that material in the interstellar cloud is dense enough to allow it to gravitationally collapse, warping the magnetic field in the process.

Astronomers Josep Girart (Institute of Space Studies of Catalonia, Spanish National Research Council), Ramprasad Rao (Institute of Astronomy and Astrophysics, Academia Sinica), and Dan Marrone (Harvard-Smithsonian Center for Astrophysics) studied the protostellar system designated NGC 1333 IRAS 4A. This system of two protostars is located approximately 980 light-years from Earth in the direction of the constellation Perseus.

They reported their findings in the August 11 issue of the journal Science.

"We selected this system because previous work had offered tantalizing hints of an hourglass-shaped magnetic field," explained Marrone. "The Submillimeter Array offered the resolution and sensitivity we needed to confirm it."

NGC 1333 IRAS 4A is part of the Perseus molecular cloud complex - a collection of gas and dust holding as much mass as 130,000 suns. This region is actively forming stars. Its proximity to Earth and young age make the Perseus complex an ideal laboratory for studying star formation.

'Hourglass Figure' Points to Magnetic Field's Role in Star Formation
The star-forming region NGC 1333 contains dozens of new stars like the Sun but less than 1 million years old. Spitzer's IRAC camera reveals those stars, as well as warm dust glowing red and bright green shock fronts in this color-coded infrared image. Its proximity to Earth and young age make NGC 1333 an ideal laboratory for studying low-mass star formation. Image credit: NASA/JPL-Caltech/R. Gutermuth & A. Porras (CfA)

Theorists predict that collapsing molecular cloud cores - the seeds of star formation - have to overcome the support provided by their magnetic field in order to form stars. In the process, the competition between gravity pulling inward and magnetic pressure pushing outward was expected to produce a warped, hourglass pattern to the magnetic field within these collapsed cores.

Using the Array, Marrone and his colleagues observed dust emission from IRAS 4A. Because the magnetic field aligns the dust grains in the cloud core, the team could measure the magnetic field's geometry and estimate its strength by measuring the polarization of the dust emission.

"With the special polarization capabilities of the SMA we see the shape of the field directly. This is the first textbook example of theoretically predicted magnetic structure," said Rao.

The data indicate that, in the case of IRAS 4A, magnetic pressure is more influential than turbulence in slowing star formation within the cloud core. The same likely is true for similar cloud cores elsewhere.

Despite the moderating influence of the magnetic field, IRAS 4A is dense enough for gravitational collapse to continue. Approximately a million years in the future, two sunlike stars will shine where only a dust-cloaked cocoon lies today.

The SMA is a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) in Taiwan. It is located atop Mauna Kea in Hawaii.

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: What is interplanetary dust and can it spread the ingredients of life?

Related Stories

A new symmetry underlies the search for new materials

November 17, 2015

A new symmetry operation developed by Penn State researchers has the potential to speed up the search for new advanced materials that range from tougher steels to new types of electronic, magnetic, and thermal materials. ...

New satellite to measure plant health

November 20, 2015

ESA plans to track the health of the world's vegetation by detecting and measuring the faint glow that plants give off as they convert sunlight and the atmosphere's carbon dioxide into energy.

It's a beauty: JILA's quantum crystal is now more valuable

November 5, 2015

Physicists at JILA have made their "quantum crystal" of ultracold molecules more valuable than ever by packing about five times more molecules into it. The denser crystal will help scientists unlock the secrets of magnets ...

Image: Snowing in space?

November 2, 2015

The flurry of what looks like snow in this video is actually a barrage of energetic particles. This is what's known as a solar radiation storm, hitting an instrument onboard ESA/NASA's Solar and Heliospheric Observatory, ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.