Fast Protease Assay Using Nanoengineered Photonic Crystals

August 7, 2006

Proteases are a family of enzymes that play a central role in cellular metabolism and are key players in many diseases, including cancer. Conventional assays for protease activity are often slow – most take up to 24 hours to generate results – and require relatively large samples – in the 100 to 500 microliter size – to achieve sensitivity capable of detecting low picomole amounts of protease. These characteristics hinder both basic research and drug development efforts.

To overcome these limitations, a team of investigators at the Center of Nanotechnology for Treatment, Understanding, and Monitoring of Cancer (NANO-TUMOR), a National Cancer Institute-funded Center for Cancer Nanotechnology Excellence based at the University of California, San Diego, turned to nanoengineered porous-silicon photonic crystals to create a far faster and more sensitive protease assay system.

This new system, created by Michael Sailor, Ph.D., and his colleagues, is compatible with high-throughput array technologies. The researchers report their work on this system in the journal Advanced Materials.

To create their protease assay device, the investigators first create a photonic silicon crystal that refracts light at a specific wavelength and gives the crystal a distinct color. They then layer a thin coating of a protein onto the silicon crystal, which changes the observed color of the crystal to a greenish color. This thin protein coat also acts as a substrate for proteases, which digest protein. When digestion occurs, the color of the chip changes. This change, from green to orange-red, is visible with the naked eye.

Tests with this system showed that a visible color change occurred within an hour of placing a 1 microliter drop of protease solution on the surface of the protein-coated chip. This color change could be seen with as little as 7.2 picomoles of protease. The investigators note that coating the nanoengineered silicon photonic crystals with molecules other than proteins could produce quick, sensitive assay devices for other important classes of enzymes, such as those that digest DNA or RNA.

This work, which was funded in part by the National Cancer Institute’s Alliance for Nanotechnology in Cancer, is detailed in a paper titled, “Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity.” An investigator from the University of Auckland, New Zealand, also participated in this study. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: How the cheetah got its stripes—a genetic tale

Related Stories

How the cheetah got its stripes—a genetic tale

September 20, 2012

Feral cats in Northern California have enabled researchers to unlock the biological secret behind a rare, striped cheetah found only in sub-Saharan Africa, according to researchers at the Stanford University School of Medicine, ...

Recommended for you

Plasmonic pixels could be used to make non-fading paint

May 30, 2016

(Phys.org)—Researchers are developing a technology that could one day make paint and color packaging labels that never fade. The color is produced by a type of nanostructure called a "plasmonic pixel." These pixels are ...

Automating DNA origami opens door to many new uses

May 27, 2016

Researchers can build complex, nanometer-scale structures of almost any shape and form, using strands of DNA. But these particles must be designed by hand, in a complex and laborious process.

Dendrite-proof batteries made possible by Zylon nanofibers

May 17, 2016

(Phys.org)—One of the biggest problems plaguing high-energy, lithium-metal batteries is dendrites, which form when some of the lithium from the electrode begins to branch outside the electrode and into the electrolyte, ...

Top-down design brings new DNA structures to life

May 26, 2016

Among the valuable holdings in London's Wellcome Library is a rough pencil sketch made in 1953 by Francis Crick. The drawing is one of the first to show the double-helix structure of DNA—Nature's blueprint for the design ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.