Research lights up biochip potential

August 15, 2006
Dr. Jim McMullin
Dr. Jim McMullin

New research from a University of Alberta optics expert is shining a light on some of the challenges facing lab-on-a-chip technology. Electrical engineering professor Dr. Jim McMullin has developed a new type of biochip, which may eliminate the need for the bulky technology to analyze the results of tests happening within the tiny channels of biochips.

Biochips, made by the same processes as microchips in electronic devices, are the basic elements of a new technology designed to carry out diagnostic testing normally done on a large scale in labs. Lab-on-a-chip technology, as it's been called, promises greater efficiency in medical testing - producing information about a patient's cellular health and genetics quickly and inexpensively, speeding up patient diagnosis and treatment.

But while the technology is promising, it needs some fine-tuning before commercialization can become a reality. And that's where McMullin's work comes in. His hybrid, multi-layer, silicon/glass chip contains an integrated optics system that may eliminate the need for bulky lenses to illuminate parts of the chip for analysis.

"What we're trying to do is take the chip and, instead of using a microscope, use integrated waveguides to guide the light into the channels, into the exact spots you want to look at, and to do that in a very inexpensive way, say for a few hundred dollars instead of a hundred thousand dollars," said McMullin, whose research is published in the most recent edition of the Journal of Micromechanics and Microengineering.

"The idea of putting micro-optics inside the chip is to be able to deliver light to - or collect light from - multiple locations simultaneously. Light can be launched into the optical waveguides at the chip edge, and guided to precise location."

In the multi-level biochip, these waveguides appear as hollow, metallized grooves in a silicon wafer, and transfer light to the channels in the glass layer. The light is needed for scientists to detect biological cells in the chip, or to obtain chemical, genetic or proteomic information from extremely small samples.

This technology not only promises to make lab-on-a-chip technology sleeker, but could help pave the way for further developments in efficiency.

"One of the goals of our research is, instead of having a chip with one channel, you might have, say, 10 channels, and you bring light into all of those channels and they're all operating simultaneously on the same chip."

Currently, biochips generally contain one channel, and cannot conduct many tests at once.

"My main interest is in making these more functional chips, with wave guides and channels out of different materials, so that one chip could be used for multiple tests before being disposed of."

McMullin is also exploring ways to make biochips capable of sorting cells, something that could be particularly helpful with cancer screening.

"If you had a small number of cells, and someone wanted to do a test looking for pre-cancerous cells for example, someone could take a biopsy, load it onto a chip, and the chip would pick out the cells that were the most likely candidates to be pre-cancerous, and then you could study those," he said.

"Instead of having a laboratory technician staring through a microscope all day trying to decide, 'That one looks abnormal, let's pull that one out.'"

McMullin is specifically examining fluorescence-activated cell sorting, which detects and sorts cells by shining a laser on particles chemically treated to fluoresce.

"People have done it on chips, but it's all very rudimentary still. Most of this stuff is still in its early days. There are no standards - it's good stuff for an academic because we can explore all possible options without restrictions."

Source: By Caitlin Crawshaw, University of Alberta

Explore further: First quantum photonic circuit with an electrically driven light source

Related Stories

Single photon light emitting diodes for on-chip integration

September 26, 2016

Researchers from the Graphene Flagship use layered materials to create an all-electrical quantum light emitting diodes (LED) with single-photon emission. These LEDs have potential as on-chip photon sources in quantum information ...

Photons do the twist, and scientists can now measure it

September 26, 2016

Researchers in the University of Minnesota's College of Science and Engineering have measured the twisting force, or torque, generated by light on a silicon chip. Their work holds promise for applications such as miniaturized ...

Quantum computing advances with control of entanglement

September 27, 2016

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there ...

Recommended for you

Tech titans join to study artificial intelligence

September 29, 2016

Major technology firms have joined forces in a partnership on artificial intelligence, aiming to cooperate on "best practices" on using the technology "to benefit people and society."

US prepares to cede key role for internet

September 29, 2016

The US government is set to cut the final thread of its oversight of the internet, yielding a largely symbolic but nevertheless significant role over the online address system.

Android's Nougat update isn't flashy, but still pretty handy

September 28, 2016

Nougat, Google's latest update of its Android smartphone software, isn't particularly flashy; you might not even notice what's different about it at first. But it offers a number of practical time-saving features, plus a ...

Microsoft teams with Bank of America on 'blockchain'

September 27, 2016

Microsoft and Bank of America Merrill Lynch on Tuesday announced they are working together to make financial transactions more efficient with blockchain technology—the foundation of bitcoin digital currency.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.