New X-ray microscope for science and industry

July 3, 2006
New X-ray microscope for science and industry
The X-ray phase-contrast image of a small fly.

Australian researchers have taken X-ray technology to a new level, developing and using high-powered microscopes to see inside objects and capture high-resolution images of their subsurface structures.

Until recently, X-ray technology was unable to achieve high-resolution imaging results at the microscopic level, particularly on objects with very weak X-ray absorption characteristics.

However, using powerful X-ray microscopes and experimenting with a variety of X-ray phase-contrast imaging techniques, scientists have been able to use the penetrating power of X-rays to directly image the internal microstructures of even opaque and multi-layer objects.

It is now possible to use X-rays to see inside objects such as micro-electronic components, structural materials used in aerospace, ceramics, metal foams and even minerals.

“The uses are quite varied,” says Dr Steve Wilkins from CSIRO Manufacturing & Infrastructure Technology. “We have been looking at tissue scaffolds for growing new tissue, mineral samples and micro-electronic devices for major companies.

“We are also working on the study of bone properties, aerospace materials and intergalactic cosmic dust, and there is interest from the oil exploration sector looking at the porous structure of rocks.”

Using tomographic imaging techniques – which involve taking X-ray images from many different angles to create a three-dimensional image – it is possible to rotate and view multi-layers within an object to observe even minute imperfections.

Developed by researchers from CSIRO in conjunction with their spin-off company XRT Ltd, the X-ray instruments and methods are helping companies to develop stronger products, and to detect preliminary manufacturing defects before a company moves to full-scale production.

An X-ray ultramicroscope can deliver submicron resolution of the internal structures of opaque and multi-layer objects down to 50nm (one thousandth the diameter of a human hair), while phase-contrast imaging with commercial X-ray microfocus sources enables improved contrast with resolution down to about a micron.

New X-ray methods have been used in materials science, space science, life science, food inspection, microelectronics and geology.

As well as being used in areas such as biotechnology, there are also high-value applications such as in characterisation of micro-electronic devices and materials being developed for next-generation energy production.

Source: CSIRO

Explore further: Breakthrough With Ultra-Fast Xrays

Related Stories

Breakthrough With Ultra-Fast Xrays

July 3, 2007

Electromagnetically-induced transparency, or EIT, has been known in the visible realm for quite some time. The process is used to control such characteristics as dispersion and absorption in gases, allowing the gases to become ...

Hydrocarbon photocatalysts get in shape and go for gold

March 10, 2015

A combination of semiconductor catalysts, optimum catalyst shape, gold-copper co-catalyst alloy nanoparticles and hydrous hydrazine reducing agent enables an increase of hydrocarbon generation from CO2 by a factor of ten.

Recommended for you

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Novel light sources made of 2-D materials

October 28, 2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal ...

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.