Watching rocks grow: Theory explains landscape of geothermal springs

July 5, 2006

Physicists at the University of Illinois at Urbana-Champaign have successfully modeled the spectacular landscapes seen at geothermal hot springs.

In work reported in Physical Review Letters on June 27, physics professor Nigel Goldenfeld and graduate students Pak Yuen Chan and John Veysey present a theoretical model that describes how hot spring water flows over the landscape, depositing calcium-carbonate minerals in the form of travertine. These deposits then dam and divert the water.

"The nonlinear feedback between these two effects inexorably leads to the visually striking landscapes seen throughout the world's hot spring formations," Goldenfeld said. "Remarkably, the resulting geological structures don't depend on the rock structure or the mineral content – the statistical properties of the landscapes can be computed precisely."

The Illinois team was able to analyze such complex landscapes by using novel computational tools that they related to more standard mathematical approaches.

Composed of a nested series of ponds and terraces, hot spring landscapes are not sculpted by the forces of erosion. Instead, the rocks actually grow at a rate of about 1 millimeter per day. The Illinois group's model correctly simulates the way in which the landscape changes over time.

Hot springs comprise a complex ecosystem of interacting microbes, geochemistry and mineralogy. The rapid precipitation of calcium carbonate results in shifting flows, and in the sealing off of some springs and the eruption of new vents.

"Now that we understand the physical processes involved in how these rocks grow, we can address the way in which heat-loving microbes populate and influence the hot springs," Veysey said.

Source: University of Illinois at Urbana-Champaign

Explore further: Technology offers a bird's-eye view on how foreclosure affects the landscape

Related Stories

Cities can spawn more thunderstorms, study says

February 18, 2015

Here's a potential jolt to urbanites: Some big cities, particularly those located in hot and humid environments, actually birth more thunderstorms than surrounding rural areas.

A long-sought goal: Crystallizing an elusive protein

March 25, 2013

( —Plants use an enzyme known as "rubisco" to capture carbon dioxide from the atmosphere and, with energy from the sun and nutrients from the soil, build up the shoots, leaves, and stems that make up the plant ...

Finding Chicago's food gardens with Google Earth

January 3, 2013

Urban agriculture is promoted as a strategy for dealing with food insecurity, stimulating economic development, and combating diet-related health problems in cities. However, up to now, no one has known how much gardening ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.