Stress Management: X-Rays Reveal Si Thin-Film Defects

July 6, 2006

Pile-ups, bad on the freeway, also are a hazard for the makers of high-performance strained-silicon semiconductor devices. A sensitive X-ray diffraction imaging technique developed by researchers at the National Institute of Standards and Technology can help manufacturers avoid the latter—a bunching up of crystal defects caused by the manufacturing process for strained-silicon films.

Strained silicon is a new, rapidly developing material for building enhanced-performance silicon-based transistors. Introducing a slight tensile strain in the lattice of the silicon crystal dramatically improves the mobility of charges in the crystal, enabling faster, higher-performance devices.

The strain is achieved by first growing a relatively thick crystalline layer of silicon-germanium (SiGe) on the normal silicon substrate wafer, and then growing a thin film of pure silicon on top.

Stress Management: X-Rays Reveal Si Thin-Film Defects
X-ray topographs of three different strata of a strained-silicon wafer show close correspondence in defects from the base silicon layer (top) through the final strained-silicon layer (bottom). Color has been added for contrast, one particular defect area is highlighted. Credit: NIST

The difference in lattice spacing between pure silicon and SiGe creates the desired strain, but also creates occasional defects in the crystal that degrade performance. The problem is particularly bad when the defects cluster together in so-called “pile-ups.”

One of the best methods for studying crystal defects is to observe the image of X-rays diffracted from the crystal planes, a technique called X-ray topography. Until now, however, it’s been impossible to study the interaction of defects in the multiple layers of these complex Si – SiGe – Si wafers. In a recent paper in Applied Physics Letters, researchers from NIST and AmberWave Systems Corporation (Salem, N.H.) detail a high-resolution form of X-ray topography that can distinguish individual crystal defects layer by layer. The technique combines an extremely low-angle incident X-ray beam (“glancing incidence”) to increase the signal from one layer over another and the use of highly monochromatic X-rays tuned to separate the contributions from each layer based on their different lattice spacings.

Their results show that crystal defects initially created at the interface between the silicon wafer and the SiGe layer become “templates” that propagate through that layer and create matching defects in the strained-silicon top layer. These defects, in turn, are notably persistent, remaining in the strained-silicon even through later processing that includes stripping the layer off, bonding it to an oxidized silicon wafer, and annealing it to create strained-silicon-on-insulator (SSOI) substrates.

The research was performed at Argonne National Laboratory’s Advanced Photon Source, and supported in part by the Department of Energy.

Citation: D.R. Black, J.C. Woicik, M. Erdtmann and T.A. Langdo. Imaging defects in strained-silicon thin films by glancing-incidence x-ray topography. Applied Physics Letters 88, 224102. Published online June 2, 2006.

Source: NIST

Explore further: Calculations confirm that surface flaws are behind fluorescence intermittency in silicon nanocrystals

Related Stories

Engineers show how 'perfect' materials begin to fail

June 4, 2015

Crystalline materials have atoms that are neatly lined up in a repeating pattern. When they break, that failure tends to start at a defect, or a place where the pattern is disrupted. But how do defect-free materials break?

CLAIRE brings electron microscopy to soft materials

May 14, 2015

Soft matter encompasses a broad swath of materials, including liquids, polymers, gels, foam and - most importantly - biomolecules. At the heart of soft materials, governing their overall properties and capabilities, are the ...

Researchers exploring spintronics in graphene

May 6, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric fields, the result ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.