Protein-Nanoparticle Material Mimics Human Brain Tissue

July 21, 2006 feature

A composite material consisting of a horse protein and metallic nanoparticles displays magnetic properties very similar to those of human brain tissue, scientists have found. The work, published in the June 20 online edition of Physical Review B, may help lead to a more thorough understanding of the magnetic behavior of brain tissue and other complex natural materials.

Studying the magnetism of many natural substances, such as rocks, soils, and biological materials, can be difficult because they tend to be a mix of several magnetic components. This means that valuable structural and functional information, which can be obtained from a material’s magnetic properties, is often left undiscovered.

“It can be very difficult to separate the different components to study them individually,” said the study’s lead scientist, geophysicist Ann Hirt, to PhysOrg.com. Hirt is a researcher at the Institute of Geophysics in Zurich, Switzerland. “Often, the use of several analysis methods is necessary and, even then, definite conclusions are seldom. Finding and investigating model materials may help remedy this problem.”

As a first step, Hirt and her team identified the different components in the brain that produce magnetic signals. They used various magnetic methods, which are normally used to identify magnetic minerals in rocks. They found that the brain tissue, in which the other components are embedded, contributes the strongest magnetic signal, followed by iron in the blood of the brain. Next is ferritin, an iron-carrying protein found in nanoparticle form. Recently, a fourth component was discovered, but its identity has eluded scientists. It is either the iron-oxygen compound magnetite or a very similar compound, maghemite — or perhaps even a blend of the two. Magnetite and maghemite have such similar magnetic properties that distinguishing between them is very difficult.

“Although the signal from the tissue itself was very strong, we could easily subtract it from the total magnetization,” said Franziska Brem, another Institute of Geophysics scientist geophysicist on the team. “The remaining signal appeared to be a combination of the signals from ferritin and magnetite.”

To confirm this, the group measured the magnetic properties of a model system for which they knew the exact content and that they could study with certainty: a mixture of horse-spleen ferritin and protein-coated magnetite nanoparticles. The results show a striking similarity to the measurements for actual brain tissue.

“Based on these measurements, we can assume that the ferritin and magnetite/maghemite behavior in brain tissue is very close to that of our model material,” Brem said.

By Laura Mgrdichian, Copyright 2006 PhysOrg.com

Explore further: Imaging glucose uptake activity inside single cells

Related Stories

Imaging glucose uptake activity inside single cells

July 17, 2015

Researchers at Columbia University have reported a new approach to visualize glucose uptake activity in single living cells by light microscopy with minimum disturbance. In a recent study published in Angewandte Chemie International ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.