Research paves way for new composite materials

Jul 19, 2006

Northwestern University researchers have developed a process that promises to lead to the creation of a new class of composite materials -- "graphene-based materials."

The method uses graphite to produce individual graphene-based sheets with exceptional physical, chemical and barrier properties that could be mixed into materials such as polymers, glasses and ceramics.

The Northwestern team, led by materials scientist and physical chemist Rod Ruoff and composed of chemists, physicists and engineers, reports the results of their research in the July 20 issue of the journal Nature.

"This research provides a basis for developing a new class of composite materials for many applications, through tuning of their electrical and thermal conductivity, their mechanical stiffness, toughness and strength, and their permeability to flow various gases through them," said Ruoff, professor of mechanical engineering in the McCormick School of Engineering and Applied Science. "We believe that manipulating the chemical and physical properties of individual graphene-based sheets and effectively mixing them into other materials will lead to discoveries of new materials in the future."

The Northwestern team's approach to its challenge was based on chemically treating and thereby "exfoliating" graphite to individual layers. Graphite is a layered material of carbon with strong chemical bonds in the layers but with moderately weak bonds between the layers. The properties of the individual layers have been expected to be exceptional because the "in-plane" properties of graphite itself are exceptional, but until now it was not possible to extract such individual layers and to embed them as a filler material in materials such as polymers, and particularly not by a scalable route that could afford large quantities.

There are approximately one million metric tons of graphite sold annually around the world, and there are roughly 800 million metric tons of untapped natural graphite that could be mined and used in the future, according to the U.S. Geological Survey. Graphite is used in a wide variety of applications such as those related to friction (brake linings are one example), in gaskets, as a lubricant, and as an electrode material in the making of steel.

Source: Northwestern University

Explore further: Crystal structure and magnetism—new insight into the fundamentals of solid state physics

Related Stories

New 2-D material's properties show promise

Jun 23, 2015

One completed a series of theoretical calculations to predict its properties with the help of a massive computing center. The other grew it in bulk before waxing its atom-thin whiskers with the assistance ...

Graphene quantum dot LEDs

Jun 15, 2015

The first graphene quantum dot light-emitting diodes (GQD-LEDs), fabricated by using high-quantum-yield graphene quantum dots through graphite intercalation compounds, exhibit luminance in excess of 1,000 ...

New boron compounds for organic light-emitting diodes

Jun 10, 2015

Major advances in the field of organic electronics are currently revolutionising previously silicon-dominated semiconductor technology. Customised organic molecules enable the production of lightweight, mechanically ...

Diamond-like coatings save fuel

Jun 08, 2015

Coating engine components with hard carbon reduces friction to almost zero – a development that could save billions of liters of fuel worldwide every year. Now researchers have developed a new laser method ...

Black phosphorus reveals its secrets

Jun 02, 2015

A team of researchers from Université de Montréal, Polytechnique Montréal and the Centre national de la recherche scientifique (CNRS) in France is the first to succeed in preventing two-dimensional layers of black phosphorus ...

Recommended for you

Evidence for stable room-temperature skyrmions

Jul 06, 2015

In research published in Nature Communications, researchers from the RIKEN Center for Emergent Matter Science in Japan, along with collaborators in Europe and Japan, have identified a class of materials that d ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.