Molecular Imaging of Cells Likely with New Take on Atomic Force Microscopy

July 17, 2006

A seminal early event in the history of nanotechnology was the development of the atomic force microscope (AFM), which used a nanoscale cantilever to image solid materials at the atomic level.

The insights gained from AFM studies provided a dramatic increase in our understanding of materials at the nanoscale, and while atomic force microscopy has been used in biomedical research, its applicability in biomedical research has been limited by the fact that AFM does not work well in water.

Now, a team of investigators at Oak Ridge National Laboratory, led by Sergei Kalinin, Ph.D., have developed what it calls piezoresponse force microscopy, or PFM. This new approach to molecular-scale imaging relies on the piezoelectric phenomenon that translates electrical energy into mechanical movement in certain types of materials. Quartz crystals, as well as many biological polymers, such as enzymes and DNA, have the ability to generate piezoelectric responses. The researchers report their work in the journal Physical Review Letters.

The new technique uses an AFM microscope modified so that its gold-coated nanoscale cantilever tip is suspended in water just above the surface of a piezoelectric material, such as a quartz crystal. Applying an electric current to the piezoelectric material causes it to move, a event registered by the AFM tip. Using this approach, the researchers achieved an imaging resolution of 3 nanometers. They note that the inherent piezoresponsive nature many biological materials exhibit should allow future imaging of biological structures and their movements under physiological conditions.

This work is detailed in a paper titled, “High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Atomic force microscope advance leads to new breast cancer research

Related Stories

Revealed: How bacteria drill into our cells and kill them

December 2, 2014

A team of scientists has revealed how certain harmful bacteria drill into our cells to kill them. Their study shows how bacterial 'nanodrills' assemble themselves on the outer surfaces of our cells, and includes the first ...

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.