'Micro-boxes' of water used to study single molecules

Jul 20, 2006

Researchers at the National Institute of Standards and Technology have demonstrated the use of water droplets as minuscule "boxes" for small numbers of biomolecules. The unusually simple containment method may enable easier experiments on single molecule dynamics and perhaps lead to the development of molecule-sorting devices that might be used for medical screening or biotechnology research.

The work was reported in the July 3 issue of Applied Physics Letters.

The NIST team creates the boxes by briefly shaking a mixture of water, the biomolecules to be studied, and a fluorocarbon medium. Water droplets form in the oily fluorocarbon and naturally encapsulate one to several biomolecules. The researchers then watch through a microscope while using infrared lasers as "optical tweezers" to manipulate and combine the droplets (dubbed "hydrosomes") inside a tiny chamber on a slide.

'Micro-boxes' of water used to study single molecules
Prodded by optical tweezers, two "hydrosomes" move together and fuse to mix their contents, in an experiment using water droplets as minuscule boxes for manipulating small numbers of biomolecules for nanobiochemistry. Credit: NIST

A green laser is then used to excite the molecules in individual droplets, and the light emissions over several seconds are analyzed to count the molecules and observe other phenomena. The researchers use two sets of optical tweezers to move droplets together to fuse them and mix their contents. The team demonstrated the technique by trapping and manipulating droplets encapsulating various molecules (including a delicate protein that survived the shaking process), detecting the fluorescence signal from dye and protein molecules, and observing the transfer of energy from one end of a specially treated DNA molecule to the other.

Water offers several advantages over other methods for containing single molecules, such as attaching them to surfaces or placing them inside liposomes (artificial cells). The water droplets can be held far from any surface that might interfere, can readily encapsulate biomolecules (which prefer being in water as opposed to the fluorocarbon medium), and can readily fuse together to mix molecules or rapidly change their chemical environment.

The water droplets currently average about 300 nanometers in diameter and contain volumes measured in quadrillionths of liters; research is continuing to improve methods for controlling droplet size for different applications.

Citation: J.E. Reiner, A.M. Crawford, R.B. Kishore, L.S. Goldner, K. Helmerson and M.K. Gilson. 2006. Optically trapped aqueous droplets for single molecule studies. Applied Physics Letters. July 3.

Source: National Institute of Standards and Technology

Explore further: New model sheds light on 'flocking' behaviour

Related Stories

New link between ocean microbes and atmosphere uncovered

May 18, 2015

Few things are more refreshing than the kiss of sea spray on your face. You may not realize it, but that cool, moist air influences our climate by affecting how clouds are formed and how sunlight is scattered ...

'Supercool' material glows when you write on it

May 13, 2015

A new material developed at the University of Michigan stays liquid more than 200 degrees Fahrenheit below its expected freezing point, but a light touch can cause it to form yellow crystals that glow under ...

Perseverance paves way for wind laser

Apr 22, 2015

Developing new satellite instruments is always challenging, but at times more head-scratching is needed to create something truly cutting-edge. ESA's Aeolus mission may have caused a few headaches along the ...

Recommended for you

New model sheds light on 'flocking' behaviour

3 hours ago

Understanding how turbulence can alter the shape and course of a flock of birds, a swarm of insects or even an algal bloom could help us to better predict their impact on the environment.

Defining a national standard for dynamic pressure waves

May 25, 2015

In recent years, the physical damage done by pressure waves – such as traumatic brain injuries from explosives sustained by military personnel in the Middle East – has become an increasingly urgent public ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.