Variable physical laws

June 8, 2006

Physical quantities such as the speed of light, the gravitational constant and the electron mass are believed to be the same independent of where and when they appear in the universe. Therefore, they are known as constants of nature.

Should they deviate from their actual values the universe would have looked different and neither man nor other living organisms would have existed. But imagine that the fundamental constants – and thereby also the fundamental laws – are not at all constant but have gradually changed over time.

Implications that this is the case have been known for some time and are now supported by new measurements – for instance from Lund University, Sweden.

The constants are so fundamental that it is usually impossible to detect any possible changes since the tools we use to measure these changes are also changing. For instance, if the size of the atoms would increase the atoms in the measuring device would also increase to the same extent and everything would appear normal.

But there are dimensionless constants, i.e. they are independent of units. On April 21 this year new findings were published in Physical Review Letters implying that a dimensionless constant – the ratio between the electron mass and the proton mass – has changed with time.

And shortly measurements will be presented in Monthly Notices of the Royal Astronomical Society showing that another dimensionless constant, called the fine structure constant, is also varying with time.

The measurements have been performed at Lund Observatory in Sweden by professor Sveneric Johansson and his PhD student Maria Aldenius in collaboration with Dr Michael Murphy, Cambridge, UK.

The fine structure constant is a combination of the speed of light, the electron charge, Planck’s constant and the vacuum permittivity. It characterizes the electromagnetic force that keeps the atom together.

To study the time variation of this constant the aged light from distant quasars – extremely powerful and bright objects billions of light years away – has been compared with modern laboratory data. When the quasar’s light passes through intervening gas clouds an absorption spectrum is formed – a continuous spectrum with dark absorption lines.

These dark lines form characteristic signatures of the chemical elements present in the clouds. Studies of systematic shifts in the line positions compared to laboratory spectra indicate changes in the fine structure constant.

"Previous measurements of this type have been based on lighter elements like magnesium, silicon and aluminum," says Sveneric Johansson. "But it was difficult to make any clear conclusions from that study."

In 1999 an Australian research group led by John K Webb suggested that the number of elements investigated should be increased. In Lund we were asked to help with new laboratory measurements and we increased the accuracy further by doing all measurements simultaneously from the same laboratory source. Now we have included magnesium and the heavier elements iron, titanium, chromium and manganese in our measurements.

"The result is that the uncertainty of the ruler is lowered by a factor of ten. But the picture from previous measurements of the fine structure constant seems not to have changed."

The changes of both the proton/electron mass ratio and the fine structure constant are very tiny. The fine structure constant has changed by some parts per million during six billions years.

There is no reason to worry – unless you are a physicist or astronomer and don’t want to change the model of the universe we have today. But Sveneric Johansson thinks that the results are more exciting than troublesome.

"Our view of the universe is in many ways not complete, he says. The content of 90% of the matter in universe is unknown – the so called “dark matter”. And there are contradictory opinions about what happened after the Big Bang. Therefore, we should welcome all new knowledge even if it does not agree with our present conception of the world."

Source: The Swedish Research Council

Explore further: What is dark energy?

Related Stories

What is dark energy?

February 1, 2016

We live in interesting times. For thousands of years, we have thought we knew what the universe – and everything in it – was made of: normal matter, the kind that make up the elements of the periodic table.

Switching light with a silver atom

February 1, 2016

Researchers working under Juerg Leuthold, Professor of Photonics and Communications, have created the world's smallest integrated optical switch. Applying a small voltage causes an atom to relocate, turning the switch on ...

Viscous nanopores collapse according to universal law

December 2, 2015

Viscous nanopores, tiny holes punctured in fluid membranes, collapse according to a universal law, a Purdue University study shows. The finding could improve the design of nanopores for fast, inexpensive DNA analysis and ...

When poverty becomes disease

January 7, 2016

Talmadge King Jr., MD, dean of the UCSF School of Medicine, tells the story of an ER physician who had lost a document and was searching frantically for it in the garbage bins behind Zuckerberg San Francisco General Hospital ...

Climate-smart agriculture still lags after Paris

December 21, 2015

Environmental problems are usually multifaceted and complex. This is especially true for climate change. As a result, over time researchers and policymakers have learned the importance of a comprehensive and multi-pollutant ...

Recommended for you

Optical rogue waves reveal insight into real ones

February 10, 2016

(Phys.org)—Rogue waves in the middle of the ocean often appear out of nowhere and vanish just as quickly. But in their short lifetimes, they can generate walls of water 15 to 30 meters (50 to 100 feet) high, crashing down ...

Sneezing produces complex fluid cascade, not a simple spray

February 11, 2016

Here's some incentive to cover your mouth the next time you sneeze: New high-speed videos captured by MIT researchers show that as a person sneezes, they launch a sheet of fluid that balloons, then breaks apart in long filaments ...

How particles pack in a confined space

February 10, 2016

(Phys.org)—Many biological systems involve dense packing of a large amount of material or particles in a confined space. For example, eukaryotes' nuclei hold about two meters of DNA that is tightly wound into chromosomes. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

jeffsaunders
not rated yet Jun 02, 2009
i welcome this new knowledge

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.