SPEAR3 Accelerator Approved for 500mA

Jun 02, 2006
The SPEAR3 beamline. Image courtesy of Peter Ginter
The SPEAR3 beamline. Image courtesy of Peter Ginter.

This spring the Department of Energy gave SPEAR3 license to run the accelerator at 500 milliamperes (mA), the current the accelerator was designed to use. Since it opened in January 2004, the machine has operated at 100 mA while beamlines were rebuilt with increased radiation shielding and optical components were upgraded to handle the increased beam power.

The fivefold increase in current translates into more photons shining on experimental samples, which will be especially helpful for protein crystallography studies.

Half an ampere (500 mA) may not sound like much compared to typical household currents rated at 15 to 30 A, but it’s the current multiplied by the voltage drop in an electrical circuit that determines how much power is produced. Each electron circulating in SPEAR3 loses more than a million volts on every turn around the ring. At 500 mA, the power radiated from the beam is close to 550 kW, the equivalent of 5,500 bright light bulbs.

"The challenge is to build vacuum chamber and beamline components that can take high power density," said Bob Hettel, head of the SSRL Accelerator Systems Department. "Most existing light sources operating near 3 GeV (billion electron volts) use no more than 300 mA, and usually much less. Building on experience gained from the B-Factory design, SPEAR 3 was the first 3-GeV light source designed for higher current, a trend that is now being followed in designs for new machines operating at that energy."

The machine has run at 500 mA several times already, with special permission from the DOE, to test the newly designed equipment and increased shielding. By the end of the 2006 summer shutdown, all beamlines except two will be capable of handling 500 mA. Beamline three has been decommissioned, and beamline four will be upgraded during the summer of 2007.

Initial testing has shown that the accelerator can maintain a stable beam at 500 mA. However, during the 2006-2007 run, SPEAR3 will operate at elevated current only a fraction of the time, with any beamlines not capable of 500 mA closed during those times.

Source: Stanford Linear Accelerator Center, by Heather Rock Woods

Explore further: Physicist's Nobel Prize up for auction; $325,000 minimum bid (Update)

Related Stories

High mountains warming faster than expected

Apr 23, 2015

High elevation environments around the world may be warming much faster than previously thought, according to members of an international research team including Raymond Bradley, director of the Climate System ...

Smaller and cheaper particle accelerators?

Apr 22, 2015

Traditionally, particle accelerators have relied on electric fields generated by radio waves to drive electrons and other particles close to the speed of light. But in radio-frequency machines there is an ...

Recommended for you

On-demand X-rays at synchrotron light sources

15 hours ago

Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources ...

New model sheds light on 'flocking' behaviour

23 hours ago

Understanding how turbulence can alter the shape and course of a flock of birds, a swarm of insects or even an algal bloom could help us to better predict their impact on the environment.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.